

All-in-One Compact Telemetry and Communication Device

Ahmet Alperen DİKİCİ, Yusuf Batuhan DARÇIN, Ömer Faruk ŞAFAK

Supervisor

Prof. Dr. Ali Ziya ALKAR Electrical and Electronics Engineering, Hacettepe University

Introduction

- The aim of this project is to design a telemetry system.
- In this telemetry system, a Bluetooth hardware and a Wi-Fi module will be used to provide communication.
- A mobile software will be used to monitor and send data remotely to mobile devices and cloud system.
- It is aimed to use many different sensors in the project.
- It is aimed to create new solutions on smart home technologies and IoT based new engineering and technology areas.
- This project is just like a Swiss army knife for portable IoT solutions.

Application Areas

This device is extremely low cost and versatile compared to its competitors and can be used in numerous areas such as home automation, mining industry, health care, smart farming, security.

Specifications and Design Requirements

- The project design includes processing 13 different data from 11 different sensors,
- Provides Bluetooth and Wi-Fi connectivity options,
- It has a strong case to protect the body of the device from impacts,
- It has a microcontroller that can control all the components on the system and has a low power mode,
- All parts of the device should be as modular as possible, stable, price-performance product and long-lasting components.
- Specifications of our solution are all the features that we mentioned above and also the power management system may be redesigned as battery working which makes possible being portable.

<section-header><section-header><section-header><section-header><section-header><complex-block><complex-block>

Figure: Example Usage of Project for Smart Farming.

Results and Discussion

Page2 Connected 28/05/2022 02:33:13 ÖS 29 °C 45 % 213 cm 0 cm 223.41 pp 13 ppm 843 lx 0.00N 187 39.925533 32.866287 No Action Wet soil

CONNECT TO DEVICE

DISCONNECT FROM DEVICE

Figure: An Overall Description of the Project Components.

- Our solution should be as compact as possible. Due to the high number of components in the circuit, we designed two different PCB boards and assembled the system together.
- In order to protect our design from external influences, we designed a case using plexiglass material.

CLOUD	CLOUD	DATA SET 1	DATA SET 2	
ABOUT PROJECT	ABOUT PROJECT	GO BACK	GO BACK	

Figure: Panda Telemetry Android Application.

- Our device can instantly present the sensor data it collects to the user with the OLED on it.
- A Bluetooth application has been developed within the scope of the project.
- It can transmit sensor data wirelessly with its Bluetooth application and integrated cloud service.

References

 Brian Kopp, "Industrial telemetry", in Telemetry Systems Engineering, pages 493-524, Artech House, 2002
Chris Nagy, "Embedded Systems Design", in Architecture: CPU and Memory, pages 12-24, Elsevier Science, 2003.

Acknowledgements

This project was completed within the context of ELE401-401 Graduation Project courses in Hacettepe University, Faculty of Engineering, Department of Electrical and Electronics Engineering.

In our journey from design to a final product, we implemented

the embedded system design process step by step.

