ACADEMICS
Course Details
ELE738 - Fundamentals of Coding Theory
2024-2025 Fall term information
The course is not open this term
ELE738 - Fundamentals of Coding Theory
Program | Theoretıcal hours | Practical hours | Local credit | ECTS credit |
PhD | 3 | 0 | 3 | 10 |
Obligation | : | Elective |
Prerequisite courses | : | - |
Concurrent courses | : | - |
Delivery modes | : | Face-to-Face |
Learning and teaching strategies | : | Lecture, Question and Answer, Problem Solving |
Course objective | : | The objective of the course is to introduce ? the notion of channel coding ? conventional and modern channel codes ? fundamentals of graph theory and codes on graphs |
Learning outcomes | : | Learn and use the main algebraic tools utilized in coding theory Learn coding and decoding methods for fundamental block and convolutional codes Learn analysis tools for fundamental block and convolutional codes Learn message passing algorithms defined on graphs Learn codes on graphs, coding and iterative decoding methods for codes on graphs |
Course content | : | - Introduction to algebra - Linear block codes, - Convolutional codes - Concatenated codes - Elements of graph theory - Algorithms on graphs - Turbo decoding - Low density parity check codes |
References | : | Wicker and Kim, Fundamentals of codes, graphs, and iterative decoding, 2003.; Lin and Costello, Error control coding, second ed. 2004.; Richardson and Urbanke, Modern coding theory, 2008. |
Weeks | Topics |
---|---|
1 | Source and channel coding basics, complexity, bounds |
2 | Algebra review |
3 | Polynomials over Galois fields |
4 | Linear block codes structure, Hamming codes |
5 | BCH codes |
6 | Reed-Solomon codes |
7 | Convolutional codes |
8 | Midterm Exam |
9 | Concatenated codes |
10 | Elements of graph theory |
11 | Algorithms on graphs |
12 | Turbo decoding |
13 | Low-density parity check codes |
14 | Project presentations |
15 | Final exam |
16 | Final exam |
Course activities | Number | Percentage |
---|---|---|
Attendance | 0 | 0 |
Laboratory | 0 | 0 |
Application | 0 | 0 |
Field activities | 0 | 0 |
Specific practical training | 0 | 0 |
Assignments | 1 | 10 |
Presentation | 1 | 10 |
Project | 0 | 0 |
Seminar | 0 | 0 |
Quiz | 0 | 0 |
Midterms | 1 | 30 |
Final exam | 1 | 50 |
Total | 100 | |
Percentage of semester activities contributing grade success | 50 | |
Percentage of final exam contributing grade success | 50 | |
Total | 100 |
Course activities | Number | Duration (hours) | Total workload |
---|---|---|---|
Course Duration | 14 | 4 | 56 |
Laboratory | 0 | 0 | 0 |
Application | 0 | 0 | 0 |
Specific practical training | 0 | 0 | 0 |
Field activities | 0 | 0 | 0 |
Study Hours Out of Class (Preliminary work, reinforcement, etc.) | 14 | 11 | 154 |
Presentation / Seminar Preparation | 1 | 10 | 10 |
Project | 1 | 25 | 25 |
Homework assignment | 1 | 10 | 10 |
Quiz | 0 | 0 | 0 |
Midterms (Study duration) | 0 | 0 | 0 |
Final Exam (Study duration) | 1 | 25 | 25 |
Total workload | 32 | 85 | 280 |
Key learning outcomes | Contribution level | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1. | Has highest level of knowledge in certain areas of Electrical and Electronics Engineering. | |||||
2. | Has knowledge, skills and and competence to develop novel approaches in science and technology. | |||||
3. | Follows the scientific literature, and the developments in his/her field, critically analyze, synthesize, interpret and apply them effectively in his/her research. | |||||
4. | Can independently carry out all stages of a novel research project. | |||||
5. | Designs, plans and manages novel research projects; can lead multidisiplinary projects. | |||||
6. | Contributes to the science and technology literature. | |||||
7. | Can present his/her ideas and works in written and oral forms effectively; in Turkish or English. | |||||
8. | Is aware of his/her social responsibilities, evaluates scientific and technological developments with impartiality and ethical responsibility and disseminates them. |
1: Lowest, 2: Low, 3: Average, 4: High, 5: Highest