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Abstract: In many applications data classification may be hindered by the existence of multi-
ple contexts that produce an input sample. To alleviate the problems associated with multiple
contexts, context-based classification is a process that uses different classifiers depending on
a measure of the context. Context-based classifiers offer the promise of increasing perfor-
mance by allowing classifiers to become experts at classifying input samples of certain types,
rather than trying to force single classifiers to perform well on all possible inputs. This paper
introduces a novel mixture of experts model, the Mixture of Hidden Markov Model Experts
(MHMME), for context-based classification of samples that are variable length sequences;
and derives the update equations for a single probabilistic model that to learn the experts
and a gate that connects the experts. The model has a similar high-level structure to the
mixture of experts model but has the novelty that the gates and the experts are HMMs and
the input data are sequences. Experimental results are presented on three datasets including
one for landmine detection. Detailed analysis of the model is provided; which, over multiple
runs and cross-validation experiments, show superior results over the compared algorithms.

1. Introduction

Time-series or sequential data often show multiple patterns owing to the different contexts that they
appear in. For example, electricity usage has both seasonal and socio-economic patterns. There-
fore, a software that detects fraud should consider electricity usage within these contexts. Similarly,
in electrocardiogram (ECG) classification, certain ethnic groups and athletes show slower resting
heartbeats. Therefore, one has to consider healthy versus unhealthy heartbeats in these contexts.
Unfortunately, unlike these examples, contexts are generally hard to define, they are often inter-
laced, and do not have sharp boundaries. Moreover, context information might be inherent in the
data, but not be known to the data modeler. In such cases, we define a context as a group of similar
signatures.

A more involved example to demonstrate this problem is landmine detection. The estimated
60, 000, 000-100, 000, 000 active buried landmines around world [5] have various sizes and types.
They are roughly categorized into four groups according to their metallic content and intended
targets as high metal anti-tank (HMAT), high metal anti-personnel (HMAP), low metal anti-tank
(LMAT), and low metal anti-personnel (LMAP). However, these groups mostly overlap, and the
signals collected from these mines can be significantly affected by changes in temperature, humid-
ity, and soil conditions.
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One way to deal with multiple contexts is the mixture of experts model. In the ME architecture,
a set of expert networks and a gating network cooperate with each other to solve a non-linear
supervised learning problem by dividing the input space into a set of regions as shown in Fig. 1.
In the traditional ME model, the gate and experts are simple surfaces; however, ME models have
been found useful because of their modular and flexible structure, as described by the survey paper
by Yuksel et al. [39] which summarizes the ME and the numerous advances with it taking place in
the late 2000’s.

Fig. 1. Classification using the ME model. Red diamonds and blue dots represent data coming
from two classes. The gate divides the region in two with a soft decision, then the experts learn the
simple surfaces to separate the two classes. Taken from [39].

In this study, we are introducing a novel model, mixture of hidden Markov model experts (MH-
MME), that can both decompose time-series data into multiple contexts and learn expert classifiers
for each context. In this model, a gate of hidden Markov models defines the contexts and co-
operates with a set of hidden Markov model experts that provide multi-class classification. The
MHMME model is inspired from the mixture of experts (ME) model [15, 16], and extends it to
time-series (and sequential) data for classification. Therefore, MHMME carries the advantages
of the ME model and also brings advantages that set it apart from the other models. The main
advantages can be summarized as follows:

• MHMME model provides a divide and conquer approach, is probabilistic, and has soft bound-
aries – all of which support context learning. In addition, unlike the traditional mixture mod-
els where the mixture coefficient is a scalar, in MHMME the mixture coefficient (i.e. the gate)
depends on the input and helps define the contexts that are unknown to the data modeler.

• The learning of the contexts and the classifiers is accomplished simultaneously, in one model.
This papers gives the derivations to arrive at this single probabilistic model.

• During training, there is no hard clustering of data, which means that the sequences can freely
move between contexts and classifiers during training.

• MHMME considers the temporal connections in time-series data, and is suitable for high-
dimensional sequential data of varying lengths due to the use of the hidden Markov models
(HMMs). In addition, HMMs at the gates and the experts can be of different topologies
(number of states, observation symbols etc.).

• MHMME is suitable for multi-class classification.

• Experiments on synthetic and real data show that MHMME can perform better than ME and
HMMs, and can do well in comparison to state-of-the-art models.
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To this end, in the sections that follow, we first compare MHMME to the existing models in the
literature and explain the need to develop MHMME. Then, in Sec. 3 we give a brief introduction
to the ME model. In Sec. 4, we derive the update equations of the MHMME model and explain
its implementation. We demonstrate the intuition behind the MHMME model on a synthetic ex-
ample in Sec. 5. We show our results for landmine detection from metal detector data in Sec. 6,
and also on an object recognition dataset consisting of varying length sequences in Sec. 7. We
compare MHMME to the ME-only and HMM-only models, to its individual components, ie. the
gate HMMs and the expert HMMs, and also compare our results to those in the literature.

2. Comparison of MHMME to the ME literature: Why the need arises

In the ME literature, a number of models [6, 7, 20, 30, 32, 33, 40] were described that extend the
ME architecture to time-series data. These models, however, are only applicable to regression,
and they use a one-step-ahead or multi-step-ahead prediction in which the last couple of values of
the time-series data are used as features in a neural network. Such models cannot handle data of
varying length and the use of multilayer network-type approaches prevent them from completely
describing the temporal properties of a time-series dataset. In contrast to these models, our study
is on classification, and is focused on varying length sequences. Note that with varying or uneven
lengths, we mean that the observation sequences do not all have the same length.

On the other hand, there are a number of studies [12,29,34,42] that combine HMMs and MEs.
However, despite the similar names, these models are quite different than our model. To be specific,
in [12], each state of the HMM is a mixture of experts (whereas in our paper, each HMM is a part
of an expert). Similarly, in [29] an HMM model was modified to have two separate branches, one
for slow speech and one for fast speech. In the study by Zhao et al. [42], hierarchically organized
relatively small neural networks were trained to perform probability density estimation. Therefore,
Zhao’s model does not use HMMs, instead, it uses mixture models to mimick an HMM. Finally
in [34], SVM classifiers were trained for each region in the brain, and they were connected with
a Hidden Conditional Random Field (HCRF). One can think of the HCRFs as the gate, and the
SVMs as the experts, but temporal sequences were not of interest.

The model proposed herein differs from these previously published models and has distinct
properties that are worthwhile to investigate. It provides a stand-alone model to find the contexts
and classifiers for high dimensional data sequences with uneven lengths, and considers their tem-
poral properties in training. Unlike the traditional mixture models where the mixture coefficient
is a scalar, in the MHMME model, the mixture coefficient (i.e. the gate) depends on the input.
Therefore, the experts and the gate need to be trained simultaneously, and it is derived in this
study.

3. Mixture of Experts

In this section, we provide a brief overview of the traditional ME algorithm. For a K -class classi-
fication problem, let k 1...K be the class index. Let I be the number of experts as shown in the
figure with i 1...I denoting the expert index. Each expert is a K-class classifier. Then, these clas-
sifier experts are connected by a gate, which essentially gives a weight to each expert. Finally, the
desired output y(n) is of length K and y(n)k = 1 if the input x(n) belongs to class k and 0 otherwise.

Considering all the experts, there are K parameter sets {{wik}I
i=1}K

k=1 to be learned. Using these
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weights, the expert outputs per class are found by softmax functions:

ŷ(n)ik = exp(wT
ikx(n), 1)∑K

r=1 exp(wT
ir x(n), 1)

, (1)

which are the means of the experts’ multinomial probability models, P(y(n)|i, x(n)), which is in
short referred to as Pi (y):

Pi (y) =
∏

k

ŷyk
ik . (2)

The gate is the scalar defined by the softmax function:

gi (x, v) = eβi (x,v)∑I
j=1 eβ j (x,v)

(3)

where βi (x, v) are functions of the gate parameter v, and are linear given by βi (x, v) = vT
i x, 1 in

the original ME. The softmax function is a smooth version of the winner-takes-all model.
In ME, it is assumed that the experts are mutually exclusive [33]. Hence, using Bayes’ rule,

given an input vector x and a desired (target) output vector y, the total probability of observing the
target vector y can be written in terms of the probabilities of belonging to the region specified by
one of the I experts as:

P(y(n)|x(n)) =
I∑

i=1

gi P(y(n)|i, x(n)) (4)

where gi = P(i |x(n)), i = 1, ..., I , is the probability of selecting the i th expert depending on the
input, and P(y(n)|i, x(n)) is the probability of the input belonging to the region specified by the i th

expert.
The ME training algorithm introduces hidden variables and maximizes the log of complete data

likelihood obtained from the probability in Eq. 4 to learn the parameters of the experts and the
gate. Interested readers are referred to [39] for details of obtaining the update equations.

Once all the weights are learned, to make a single prediction, the outputs are computed per
class:

ŷ(n)k =
∑

i

gi (x(n))ŷ(n)ik ,

and for practical purposes, the input x(n) is classified as belonging to the class k that gives the
maximum ŷ(n)k , k 1...K .

4. Mixture of Hidden Markov Model Experts

The MHMME architecture introduced in this study is illustrated in Fig. 2 where the gate has I
HMM models. Each branch of the gate is connected to an expert, and an expert is a set of K
HMMs, one for each class. The gate partitions the set of all time-series data that can serve as
inputs to the HMMs, and defines the contexts where the individual expert opinions are trustworthy.
Experts discriminate data in these partitions based on class labels. Comparing Fig. ?? and Fig. 2,
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the architectures are similar, which gives the divide-and-conquer property to MHMME. The im-
portant part then, is to derive the probabilistic update equations to train the gate and the experts
simultaneously.

For the rest of the paper, the notation used for HMMs is as follows:

• W = number of states.

• M = number of symbols in the codebook.

• T = length of observation sequence.

• V = {v1, ..., vM} the discrete set of observation symbols.

• O = O1O2...OT denotes an observation sequence, where Ot ∈ V is the observation at time
t .

• Q = q1q2...qT is a fixed state sequence, where qt is the state at time t .

• S = {S1, S2, ..., SW } are the individual states.

• I = number of experts, and i 1...I is the expert index.

• K = number of classes, and k 1...K is the class index.

• λik = HMM model for the kth class at the i th expert.

• ψi = i th HMM model at the gate.

• The initial state distribution π = {πr }W
r=1, where πr = P(q1 = Sr ) is the probability of being

in state r at time t = 1.

• The state transition probability A = {{ar j }W
r=1}W

j=1, where ar j = P(qt+1 = S j |qt = Sr ) is the
probability of being in state j at time t + 1 given that we are in state r at time t .

• The observation symbol probability distribution B = {{b j (m)}W
j=1}M

m=1, where b j (m) =
P(vm at t |qt = j) is the probability of observing the symbol vm given that we are in state j .

We denote the HMM models at the gate with9 = {ψ}I
i=1, the HMM models at the experts with

3i = {λik}K
k=1, and finally, we denote the set of all the gate and expert parameters as 2 = {9,3}.

Let the data be denoted by D = {O, Y } where O = {O(n)}N
n=1 represents the input se-

quences, and Y = {y(n)}N
n=1 represents the class coded true outputs of training data such that

y(n) = y(n)1 , ..y(n)k , ..y(n)K , and

y(n)k =
{

1 if O(n) belongs to class k ;
0 otherwise.

The probability function for the gate and experts is the following:

P(Y |O,2) =
N∏

n=1

I∑
i=1

gi (O(n), 9i ) Pi (y(n)|3i ) (5)

where gi (O(n), 9i ) is the gate’s probabilistic estimate that the sequence O(n) belongs to the space
defined by expert i . In other words, gi (O(n), 9i ) = P(i |O(n), 9i ), the probability of selecting the
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Fig. 2. MHMME architecture with I experts for K classes. A gate partitions the set of all time-
series data that can serve as inputs to the HMMs. Experts learn to discriminate the classes in these
partitions.

i th expert given the sequence O(n). The second term in Eq. 5, Pi (y(n),3i ), is the probability that
the i th expert has generated y(n) given the sequence O(n). In the rest of this paper, we will denote
gi (O(n), 9i ) with g(n)i , and Pi (y(n)|3i ) with Pi (y(n)).

The gate’s probabilistic estimate is obtained by a softmax function that considers the confi-
dences of all the HMM models at the gate, given as:

g(n)i = exp f (O(n)|ψi )∑I
m=1 exp f (O(n)|ψm)

(6)

where f (O(n)|ψi ) is the Viterbi log-likelihood of observation O(n) for an HMM model ψi .
Similar to the gate, the HMMs at the experts compute the Viterbi log-likelihood

f (O(n)|λik) = log PH M M(O(n)|Q, λik), (7)

where the Viterbi likelihood PH M M(O(n)|Q, λik) is

PH M M(O(n)|Q, λik) = π (ik)q0

T −1∏
t=1

a(ik)qt qt+1

T∏
t=1

b(ik)qt
(ot). (8)

These log-likelihoods are converted to probabilities by a softmax function, and the output of expert
i for class k is ŷ(n)ik , computed as:

ŷ(n)ik = exp f (O(n)|λik)∑K
r=1 exp f (O(n)|λir )

. (9)

which is also the mean of its multinomial probability model. More specifically, for a given se-
quence O(n), expert i produces a prediction with probability Pi (y(n)) following a multinomial
distribution with mean ŷik such that:

Pi (y(n)) =
∏

k

ŷyk
ik . (10)
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Finally, the output of the MHMME architecture, {ŷk}K
k=1, is a weighted sum of the expert outputs:

ŷ(n)k =
∑

i

g(n)i ŷ(n)ik . (11)

Typically, the observation sequence O(n) is assigned to the kth class that gives the maximum
{ŷk}K

k=1 as:

k∗ = argmax
k

{ŷ(n)k }K
k=1 . (12)

It is worthy to notice the relationship between the mixture model Eq. 11 and its probabilistic
counterpart in Eq. 5. The parameters of the MHMME model are learned using the probabilistic
model in Eq. 5, which will be explained in the next section.

4.1. Training of the MHMME model

The parameters optimizing the distribution P(Y |O,2) in Eq. 5 can be found by introducing la-
tent variables Z and by maximizing the complete distribution P(Y, Z |O,2) with the expectation-
maximization (EM) algorithm. These latent variables are Z = {{z(n)i }N

n=1}I
i=1 such that

z(n)i =
{

1 if O(n) ∈ Ri ;
0 otherwise.

where Ri is the region specified by expert i . Hence, the complete data distribution becomes:

P(Y, Z |O,2) =
∏

n

∏
i

(
g(n)i Pi (y(n))

)z(n)i
(13)

So now, in the E step, we find the expectations of the hidden variables [16, 17] as:

h(n)i = g(n)i Pi (y(n))∑
j g(n)j Pj (y(n))

. (14)

In the M step, we maximize the expected complete data likelihood EZ (log P(Y, Z |O,2)) from
the objective function:

Q(2,2(p)) = EZ (l(Y, Z |O,2))

=
N∑

n=1

I∑
i=1

h(n)i log g(n)i +
N∑

n=1

I∑
i=1

h(n)i log Pi (y(n)) . (15)

In the M step, hi s are kept fixed, so the two terms on the right side of the equation are decoupled and
can be computed independently for the experts and the gate. We refer to these objective functions
as Qg for the gate and as Qe for the experts, given as:

Qg =
N∑

n=1

I∑
i=1

h(n)i log g(n)i (16)
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Qe =
N∑

n=1

I∑
i=1

h(n)i log Pi (y(n)) . (17)

Note that these equations follow from the ME model and are given here for completeness.
Unfortunately, maxψi Qg and maxλik Qe cannot be solved analytically because of the softmax
function. Therefore, iterative and gradient based algorithms have been used in the past for the
learning of the ME model [16,17,31]. Similarly, we use the gradient methods to find the parameters
of the HMMs in the MHMME model.

In the M step, we search for the HMM parameters that maximize these objective functions:

λ
(p+1)
ik = argmax

λik

Qe (18)

ψ
(p+1)
i = argmax

ψi

Qg (19)

where p denotes the iteration number. Explicitly, the HMM parameters to be estimated in the
experts are λik = {A(ik), B(ik)}. We will denote each element of the A matrix as a(ik)r j with r =
1...W, j = 1...W , and each element of the B matrix as b(ik)mj with m = 1...M, j = 1...W . To

ensure that the estimated parameters satisfy the constraints ar j ≥ 0,
∑W

j=1 ar j = 1, bmj ≥ 0, and∑M
m=1 bmj = 1, we map these parameters using log, and map them back with softmax functions:

ar j → ∼
ar j = log ar j , (20)

ar j = exp
∼
ar j∑W

j ′=1 exp
∼
ar j ′

, (21)

bmj → ∼
bmj = log bmj , (22)

bmj = exp
∼
bmj∑M

m′=1 exp
∼
bm′ j

. (23)

Such mappings are common in gradient based training models such as [18,21]. The HMM param-
eters that maximize the objective functions are found by gradient ascent updates as:

∼
a
(ik)
r j (p + 1) = ∼

a
(ik)
r j (p)+ ϵ

∂Qe(3(p))

∂
∼
a
(ik)
r j (p)

, (24)

∼
b
(ik)

mj (p + 1) = ∼
b
(ik)

mj (p)+ ϵ
∂Qe(3(p))

∂
∼
b
(ik)

mj (p)
, (25)

where
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∂Qe(3)

∂ ã(ik)r j

=
N∑

n=1

K∑
m=1

h(n)i

(
y(n)k − ŷ(n)ik

) ∂ f (O(n),3ik)

∂a(ik)r j

∂a(ik)r j

∂ ã(ik)r j

, (26)

∂Qe(3)

∂ b̃(ik)mj

=
N∑

n=1

K∑
m=1

h(n)i

(
y(n)k − ŷ(n)ik

) ∂ f (O(n),3ik)

∂b(ik)mj

∂b(ik)mj

∂ b̃(ik)mj

, (27)

and the gradients are

∂ f (O(n), λik)

∂a(ik)r j

= 1

a(ik)r j

T∑
t=1

δ(q(n)t = m, q(n)t+1 = j), (28)

∂b(ik)
i j

∂ b̃(ik)
mj

= b(ik)mj (1 − b(ik)
mj ), (29)

∂ f (O(n), λik)

∂b(ik)mj

= 1

b(ik)mj

T∑
t=1

δ(q(n)t = m, QV (O
(n)
t ) = j). (30)

Similarly, the updates for the gate are:

∂Qg(9)

∂ ã(i)r j

=
N∑

n=1

K∑
m=1

(h(n)i − g(n)i )
∂ f (O(n), ψi )

∂a(i)r j

∂a(i)r j

∂ ã(i)r j

, (31)

∂Qg(9)

∂ b̃(i)mj

=
N∑

n=1

K∑
m=1

(h(n)i − g(n)i )
∂ f (O(n), ψi )

∂b(i)mj

∂b(i)mj

∂ b̃(i)mj

. (32)

Upon observing the gradients at the gate in Eq. 31 and remembering that 0 ≤ hi ≤ 1 and 0 ≤
gi ≤ 1, we see that the gate gi would try to get closer to hi (which is held constant at the M step).
Therefore, the maximum Qg is reached if both gi and hi are 1, and the others (g j , h j , i ̸= j)
are zero. This happens when a data sequence can be completely described by a single expert.
Otherwise, the experts share a pattern and pay a price for it as described by the cross-entropy term
in Eq. 16. Upon observing Eq. 26, we see that the HMM parameters at the experts are adjusted
such that the expert output ŷik approximates the true class label yk .

Learning is accomplished by computing the expectations hi in the E step and learning the
HMMs in the M step. The complete algorithm is given in Algorithm 4.1.
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Algorithm 4.1: MHMME TRAINING(K , X, Y )

• Initialize the number of experts I
• Initialize the gating HMM parameters {ψi }I

i=1
• Initialize the expert HMM parameters {{λik}I

i=1}K
k=1

while |Q(2,2(p−1))− Q(2,2(p))|/Q(2,2(p)) > 1e − 5

do



comment: E STEP

do Compute
Viterbi log likelihoods f (O|λik) from Eq. 7
Expert outputs ŷ(n)ik from Eq. 9
Expert probabilities Pi (y) from Eq. 10
Gating outputs g(n)i from Eq. 6
Posterior probabilities h(n)i from Eq. 14

end
comment: M STEP

comment: Expert Updates

while Qe in Eq. 17 is increasing (i.e. 1Qe > 1e − 5)
for each expert

do


Map ar j → ∼

ar j and bmj → ∼
bmj (Eqs. 20 & 22)

Update A from Eq. 24
Update B from Eq. 25

Map
∼
ar j → ar j and

∼
bmj → bmj (Eqs. 21 & 23)

comment: Gate Updates

while Qg in Eq. 16 is increasing (i.e. 1Qg > 1e − 5)

do


Map ar j → ∼

ar j and bmj → ∼
bmj (Eqs. 20 & 22)

Update A using the gradients in Eq. 31
Update B using the gradients in Eq. 32

Map
∼
ar j → ar j and

∼
bmj → bmj (Eqs. 21 & 23)

Compute Q(2,2(p)) from Eq. 15
• Compute ŷ(n)k from Eq. 11
• Make a decision k∗ = argmax

k
{ŷ(n)k }K

k=1 .

return (k∗)

5. Synthetic Example

Illustrative synthetic data were created to examine the MHMME behaviour. In the sections below,
we describe the data generation, MHMME initialisation and the results of MHMME.

5.1. Data Generation

A training set of 80 sequences from two classes was generated as follows. The interval 0, 1 was
divided into 10 sub-intervals. For each sub-interval i = 1, . . . , 10, a sample xi was drawn from a
uniform distribution on that sub-interval. Then,

• 20 sequences were generated from class 1 using y(1)in = xin + N (0, σ 2) where n = 1, . . . , 20,
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• 20 sequences were generated from class 1 using y(1)in = −xin + 1 + N (0, σ 2) where n =
21, . . . , 40.

• 20 sequences were generated from class 2 using y(2)in = x2
in + N (0, σ 2) where n = 1, . . . , 20

• 20 sequences were generated from class 2 using y(2)in = −x2
in + 1 + N (0, σ 2) where n =

21, . . . , 40.

In all cases σ was set to 0.08. These sequences are displayed in Fig. 3. We refer to them as
x,−x, x2 and −x2.

Using the same parameters and protocol, a test set was generated containing 40 samples per
class. The y values were used as the data; the x values were ignored. Therefore, the features were
1D sequences as if the data were projected onto the y-axis. The values were discretized to five
symbols, linearly spaced between 0, 1.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 3. Synthetic data for two classes. The sequences that belong to the first class are displayed
in red (∗), and the sequences that belong to the second class are displayed in black (+). The
first class has 20 sequences generated from the function y = x + N (0, σ 2) and 20 sequences
generated from y = −x + 1 + N (0, σ 2) overlayed on each other. Similarly, the second class has
20 sequences generated from the function y = x2 + N (0, σ 2) and 20 sequences generated from
y = −x2 + 1 + N (0, σ 2). These y-values were quantized to 5 symbols and the discretized values
were used as the data. Each data sequence has length 10.

5.2. Initialization of the MHMME model

To discriminate the sequences, an MHMME model was trained with two experts. All HMMs in the
MHMME model had three states and five symbols. To initialize the gate, the data were clustered
by k-means [19] into two, and a Baum-Welch (BW) HMM [23] was fit to each of these clusters.
To initialize the experts, the sequences from each class that were highly weighted by the gate were
modeled with BW-HMM.

With this initialization, the first gate HMM immediately gave more weight to the y = x and
y = x2 sequences, and the second gave more weight to the y = −x + 1 and y = −x2 + 1
sequences.

5.3. Results of MHMME

Upon the MHMME training, the first expert learned HMM models that discriminate among y = x
and y = x2, and the second expert learned HMM models that discriminate among y = −x + 1
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and y = −x2 +1. The patterns learned by each HMM are shown in Fig. 4 where the bigger circles
denote the contexts defined by the gate, and the smaller circles denote the results of classification
by the experts. The A and B matrices of the HMM models at the gate and at the experts are
displayed in Figs. 5 and 6 as Hinton diagrams in which the area occupied by a white square is
proportional to the magnitude of the matrix entry. In Fig. 5, observe that the first HMM at the gate
learns sequences with positive slope, and the second learns sequences with negative slope. Recall
that the five symbols were linearly spaced between 0, 1. So the top row in the B matrices denotes
the highest symbol, and the bottom row the lowest . These sequences are discriminated with expert
HMM models as shown in Fig. 6. The B matrices suggest that each HMM is learning the sequence
shapes with stress on their discriminative properties.

Fig. 4. MHMME results on synthetic data. The first HMM in the gate learns a model for y = x
and y = x2 and defines the context to be the positive slope. The second HMM in the gate learns
a model for y = −x and y = −x2 and defines the context to be the negative slope. Then, the
first expert learns to discriminate between y = x and y = x2, and the second expert learns HMM
models to distinguish between y = −x and y = −x2. The HMM parameters that lead to this
result are plotted in Fig. 5 for the gate and in Fig. 6 for the experts.

Fig. 5. HMM models learned at the gate for the synthetic data. The transition matrices (A) and
the observation matrices (B) are displayed as Hinton diagrams, in which the area occupied by a
white square is proportional to the magnitude of the matrix entry. The first HMM model at the gate
learns the sequences with a positive slope (x and x2) as described by the A1 matrix in (a) and the
B1 matrix in (b). The second HMM model at the gate learns the sequences with a negative slope
(-x and -x2) as described by the A2 matrix in (c) and the B2 matrix in (d).

The initial classification rates were 65% on the training data and 60% on the test data. After
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Fig. 6. HMM models learned at the experts for synthetic data. A subscript i j means i th expert
j th class. The transition matrices (A) and the observation matrices (B) are displayed as Hinton
diagrams. There are only slight differences in the A matrices (a-d), but the figures (e)-(h) show
what the B matrices have learned to model and discriminate the sequences of Fig. 3.

MHMME learning, the classification rates reached 98% on the training data, and 94% on the test
data. The improvement in the objective function with respect to the outer iterations is displayed
in Fig. 7. With one outer iteration, we mean a complete E-M step where all the parameters in the
experts and the gate are updated. Note that at each update of an HMM, there are several inner
iterations that are run until convergence, as given in Algorithm 4.1.

The red dashed curve is the objective function of the gate, Qg in Eq. 16, and the green dotted
curve is the objective function of the experts, Qe in Eq. 17. Qg and Qe are summed to get the
total objective function Q in Eq. 15, which is displayed as the solid blue curve. The patterns in
the iterations point to an interesting observation. In the first iteration, Qg, the objective function
of the gate stays the same, and the experts update relatively quickly. Then Qe attains a smaller
incline while Qg shows a significant increase for the next two iterations. Finally, when the gate
updates become almost constant, the experts keep adjusting themselves until both the experts and
the gate reach a steady solution. With these adjustments at each iteration, the experts strive to best
represent the sequences that are highly weighted by their corresponding gate.

It is noted that with different initializations or numbers of experts, the gate could partition the
space differently as there are many solutions to this problem. In that case, one expert/gate com-
bination finds meaningful patterns for data that received low confidences from the other experts.
With this interpretation, one can compare it to AdaBoost [10]. However, there is at least one major
difference: the experts and gate are learned and updated simultaneously, whereas the experts are
learned successively in the original AdaBoost algorithm and there is no going back when an expert
is learned.

6. Experimental Results with Landmine Data

A dataset of measurements collected with a wide-band electromagnetic induction (WEMI) sensor
over regions of earth containing buried landmines and non-mine (clutter) objects is used for this
application. The data were collected in two outdoor environments at which landmines and clutter
objects were buried in the centers of cells in rectangular grids. The cells were 1.5 meters x 1.5
meters. Some cells, called blanks, had nothing buried in them. Table 1 tabulates the number of
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Fig. 7. MHMME objective function. The objective functions for the gate (Qg) and the experts (Qe)
versus the number of iterations. The total objective function Q displayed as the solid line is the
sum of Qg and Qe.

objects in both sites.

Table 1 Number of landmine and clutter objects

Notation Meaning Number

HMAP High metal anti-personnel mine 30
LMAP Low metal anti-personnel mine 66
HMAT High metal anti-tank mine 11
LMAT Low metal anti-tank mine 49
HMC High metal clutter 89
MMC Medium metal clutter 28
LMC Low metal clutter 28
NMC or B Non-metallic clutter or blank cell 142

The sensors are described in detail in [9,27]. The WEMI sensors detect metal and produce char-
acteristic signatures of many metallic objects. They collect complex responses in 21 frequencies
between 330Hz and 90, 030Hz equally spaced in log space; In the configuration used to collect
the data described here, data were collected at 1 cm intervals in the direction of travel (called the
down-track direction) using three sensors aligned perpendicular to the direction of travel. A WEMI
sensor response can be modeled as

S(w) = AI (w)+ i Q(w). (33)

where w is the frequency, A is the magnitude, I (w) is the real (in-phase) response and Q(w) is the
imaginary (quadrature) response. This shape can be represented by the Argand diagram, that is, the
plot of I (w) with respect to Q(w) [27]. The Argand diagram shape can characterize the type and
distribution of metal in a target [9]. Mines of the same type can show similar Argand curves that
are scaled versions of each other depending on depth. Thus, it is possible to discriminate between
some landmines and clutter [11,24,35,38]. However, the extent of the ability to discriminate is not
known at this time.

Example Argand diagrams are shown in Fig. 8. Small mines with small amounts of metal
are generally buried close to the ground surface and generate a faint WEMI response that can be
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confused with surface clutter. Large mines with small amounts of metal are often found at deeper
depths and their WEMI response can also be faint. Furthermore, a small mine that is mostly metal
can be buried deeply but appear similar to a small mine with a small amount of metal buried at
a shallow depth. As a result, the features of these subclasses are interlaced and it is difficult to
appoint a model as an expert to identify a particular subclass of mines [11, 25, 36]. The MHMME
model offers promise for better discrimination between mines and clutter by identifying contexts.

Fig. 8. Contexts defined by the gate HMMs. Each sequence is a normalized Argand diagram which
is the plot of the real EMI response I (w) vs. the imaginary EMI response Q(w). On the x-axis, the
type of the mine or nonmine object is given; such as LMAP, LMAT, HMAT, HMAP and so on. Each
column shows the top three Argand sequences among all the training sequences that are assigned
the highest weight by the gate HMM. For example, in (a) the first gate HMM learns the LMAT
objects of a specific shape to be the first context. In (d), LMAP objects and a blank cell fall under
the same context because of their similar shapes. It will now be the job of the experts to identify
the intricate details to distinguish between the mine and non-mine sequences.

The data measured by the middle sensor were used for analysis [24]. During training, pairs of
in-phase and quadrature data {I (w), Q(w)} were discretized to 50 cluster centers using fuzzy c-
means (FCM) clustering [1]. An example is displayed in Fig. 9. The complex response collected at
21 frequencies are discretized using this clustering resulting in an observation sequence of length
21. These observation sequences are the sequences that the HMM processes.

6.1. Initialization

The MHMME architecture was set to have 8 experts based on our prior knowledge of Table 1.
This also corresponds to 8 HMMs at the gate to be able to produce a weight for each expert; and 2
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Fig. 9. Cluster centers of the landmine data. In-phase and Quadrature components were used for
quantization.

HMMs at each expert. All the HMMs were set to have 3 states, determined experimentally.
The gate HMMs were initialized using clustering HMMs (Cl-HMM), which is the abbreviation

for Smyth’s sequence clustering approach [28]. A brief description of Cl-HMM is as follows: an
HMM model is fit to each training sequence, resulting in N HMM models for N sequences. All N
training sequences are tested on all N HMM models, and sequences with similar likelihoods are
clustered together into G groups using hierarchical clustering. Then a new HMM is learned for
each cluster using the Baum-Welch algorithm [23]. To initialize the gate, 4 HMMs were learned
from class 1 (mines) and 4 HMMs were learned from class 2 (non-mines) using Cl-HMM. To
initialize the experts, the sequences from each class that were highly weighted by the gate were
modeled with BW-HMM.

6.2. Landmine Detection Results

A sample output of the MHMME classifier is given in Fig. 8. Each subfigure shows the sequences
that received the highest probabilities by the gate HMMs. For example, the first HMM at the gate,
as shown in Fig. 8(a), gave the highest probabilities to mainly LMAT objects. Similarly, LMAT
and HMAP objects of a particular shape share the second context. This is an interesting and a very
intuitive result. Low metal anti tank (LMAT) mines are bigger in size, but they have lower metallic
content and they are buried in deeper levels of the ground. High metal anti personnel (HMAP)
mines on the other hand are much smaller than the AT mines but are buried closer to the ground
levels. Therefore, even if these are completely different objects, their metallic response may look
the same. As a result, they fall into the same context, and instead of learning one model for HMAP
mines and another for LMAT mines; it is more meaningful to automatically identify the similar
ones and consider them under a single context.

On the other hand, the fourth gate HMM in Fig. 8(d) is also very interesting. Here, the gate
HMM-4 has identified some LMAP mines and a blank (B) cell. There is nothing buried inside the
blank cell; however, due to several environmental effects, the signals from the LMAP mine and
the blank cell, which are completely different, may look alike in their argand diagrams. Therefore,
they fall into the same context. Now that the gate has identified which sequences are similar; it is
the experts’ duty to discriminate between these sequences and come to a mine/non-mine decision.

The average classification results obtained from twenty experiments of 10-fold cross-validation
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are reported in Table 2. In running these experiments, our goal is to fundamentally understand what
is the experts’ success rate, the gate’s success rate, what is the contribution of the initialization on
the overall success, and to understand if ME or HMM is the main identifying component and what
would be the results if we used a discriminative classifier such as the MCE-HMM. In particular,
we compare MHMME to the (i) Cl-HMM model used to initialize the MHMME, (ii) ME-only and
HMM-only models including a discriminative HMM, and (iii) gate and experts when they are used
individually as classifiers. Each of the classifiers that are compared are explained below.

• Cl-HMM: Sequences from each class are clustered into 4 using [28], and an HMM is learned
for each cluster, resulting in 8 HMMs. A test sequence is assigned to the class whose HMM
yields the highest log-likelihood.

• Gate: The gate HMMs of the full MHMME model are used as classifiers to test their indi-
vidual performance. The first four HMMs are assumed to represent the first class, and the
next four HMMs are assumed to represent the second class. A test sequence is assigned to
the class corresponding to the HMM that yields the highest log-likelihood.

• Experts: Each expert HMM is used as a classifier.

• PCA + ME: The real and the imaginary parts of the data are combined to form a sequence
of length 42. Then PCA is applied and the dimensionality is reduced to 10. These feature
vectors are used to train a standard ME model.

• MCE-HMM: Minimum Classification Error HMM is a discriminative learning method that
minimizes the total misclassification error. It was introduced by Juang et al. [18] and used
in [14,41] for landmine detection. The parameters of MCE-HMM as they appear in [41] were
set as follows: η = 1, γ = 8, θ = 0, ϵ = 0.1.

Table 2 Classification rates on the landmine data

Model Mean Std. Deviation
MHMME 0.80 0.05
MCE-HMM 0.75 0.05
PCA + ME 0.73 0.05
Gate 0.71 0.05
Cl-HMM 0.70 0.02
Experts 0.61 0.02

Classification rates are given in Table 2 in decreasing order. The mean and standard deviation
of classification rates are computed from 20 independent training/testing runs, each of which em-
ployed a 10-fold cross-validation. When compared the other algorithms, MHMME performs far
better than the HMM-only and the ME-only methods such as the MCE-HMM and the PCA+ME.

In addition, our goal was to understand what is gained by the full MHMME model beyond
what can be achieved by the individual components. Upon observing the classification rates of
the experts and the gate as if they were used as classifiers; MHMME significantly increases the
classification rates beyond those obtained by the components. It is also interesting to compare
the Gate and the Cl-HMM; although the gate was initialized with Cl-HMM, it did not necessarily
increase the classification rates after training, rather it worked towards the goal of increasing the
overall probability of the gate and experts combined in an MHMME. These results show that it is
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not the experts or the gate alone, but rather it is their combination in the MHMME model that gives
good classification rates.

To sum up, MHMME found contexts that are similar to what a human expert would find; such
as one context for high metallic anti personnel (HMAP) mines, one context for low metal anti-
personnel mines (LMAP) and so on. However, it also showed that some of the non-mines and
landmines are very similar; and that an empty cell can also look very much like an LMAP. In such
interesting cases, the MHMME model first groupd together these signals that look alike (ie. learn
the context), and learn the experts to classify these data into mine/ non-mine decisions.

7. Experimental Results on the CP Dataset

In this section, we evaluate the behavior of MHMME on the chicken pieces (CP) dataset [13]. We
describe the data in Sec. 7.1 and the MHMME initialization in Sec. 7.2. In Sec.7.3 we analyse
the MHMME classifier and the characteristics of the trained experts and the gate, the likelihood
distributions, and reliability and reject rates. We then analyze the internal structure of MHMME in
Sec. 7.4 and evaluate the performance of each component of MHMME and how the components
compare to using the ME or HMM models had they been combined in the MHMME way.

7.1. Data Set

The chicken pieces dataset contains 446 binary images of five classes of pieces of chicken. There
are 117 images in the Wing, 96 images in the Drumstick, 76 images in the Back, 61 images in
the Thigh and Back, and 96 images in the Breast classes. This dataset is publicly available at
http://algoval.essex.ac.uk/data/sequence/chicken/. The features are fully
described by Bicego et al. [2, 3]. Briefly, the binary image contours were approximated by line
segments. The features were recorded as the angles between consecutive segments. Therefore, a
data sample is a sequence of features from one image. The lengths of the sequences in the CP
dataset are varying between the minimum length of 18 and the maximum length of 104. The mean
length of the sequences is 54 and the median length is 51. The CP sequences exhibit significant
variation within each class, making it a good test case for our model.

On another note, it should be stated the MHMME model was developed based on a need for
landmine detection; and that there might be better models to discriminate the CP dataset such as
the ones based on SVMs (also reported in our own paper in [35]). However, our goal in this section
is to demonstrate the inner workings of the MHMME on a dataset everyone can freely access and
quickly understand; and to show in detail what each and every component is learning, and how
that is contributing to the overall analysis.

7.2. Initialization

The MHMME was initialized with 10 experts with 3 states and 20 symbols per HMM. The number
of states was selected from published results [4,8] and was confirmed experimentally. The number
of symbols was selected by minimizing misclassification rates for a basic HMM classifier. The
symbols were found by clustering the data with fuzzy c-means (FCM) [1]. The number of experts
was selected based on achieving the highest classification rates with the Cl-HMM classifier, which
was described in Sec.6.1. The Cl-HMMs achieved the best classification results for G = 2 clusters
for each class of the CP data. Therefore, we took G = 2 clusters, and initialized the 10 gate HMMs
with the CI-HMMs .
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Sequences that produced the highest log-likelihoods from the 10 gate HMMs were used to
train expert HMMs using the Baum-Welch algorithm. Thus, contexts are initially designed to be
associated with classes, however, during MHMME training, contexts get updated to increase the
overall probability that is defined by both gate and experts, and need not represent a specific class.
Within each context, it is the expert’s duty to learn models that discriminate the 5 classes.

7.3. Analysis of MHMME Classifier

Two-fold cross-validation was used for MHMME training for comparison to previous work [4, 8,
22, 26]. The contexts defined by the gates are represented in Fig. 10. Each column shows two
sequences that represent a learned context. The sequences have fairly variable shape and are not
class specific; they may be shared between classes. This observation is illustrated in Table 3 where
each sequence has been assigned to the gate HMM that produced the highest log-likelihood. The
first column shows that most sequences from the class 1 are represented by the first and the second
gate HMMs, but other sequences from class 1 were better represented by the 4 − 7th gate HMMs.
From another perspective, the 5th gate HMM (5th row) represents at least one sequence from every
class. The same applies to the 4th gate HMM (4th row). Therefore, the gates are not sufficient for
high performance classification, and the experts are needed. Note that all assignments are actually
probabilistic, and there is no such hard clustering of data during training. The hard assignments
have been provided for evaluation.

Fig. 10. Graphical depiction of the gates for each learned context. Each context has a gate HMM
associated with it. These HMMs were run on all the 223 training sequences. The HMMs produced
a likelihood value for each sequence. For each context, the two sequences that were assigned the
two highest likelihood values by the gate HMM for that context are shown in the figure. The y-axis
is in the range −0.35, 0.93 and shows the amplitude of the features.

Classification rates from combining expert and gating models are shown Table 4. Note that the
misclassification rate is significantly reduced. These class assignments are probabilistic and the
outputs can be thresholded. A more thorough look given by reliability and reject rates as shown
in Fig. 11 can measure this characteristic. They are defined as follows: let th be a threshold on
classifier confidence. Let Nth denote the number of samples, x , with confidence C(x) such that
C(x) ≥ th. Let Cth denote the number of correctly classified samples with C(x) ≥ th. The
reliability R of the classifier at threshold th is defined as R(th) = Cth/Nth , and the reject rate

19



J (th) = (N − Nth)/N where N is the total number of samples. Fig. 11 shows that with no
rejection, about 18% of the samples are misclassified. However, if we reject 40% of the samples,
this corresponds to the threshold value of 0.6, and then only about 4% from the remaining 60%
are misclassified. Thus, about 60% of the patterns are easily classified. Also, some patterns are
ambiguous so completely accurate classification is unrealistic.

Table 3 Gate results

Class
1 2 3 4 5

Gate

1 10 0 0 0 0
2 29 1 1 3 0
3 0 17 0 1 3
4 9 9 1 4 6
5 1 5 21 1 11
6 1 3 24 0 7
7 9 4 0 19 11
8 0 0 0 4 3
9 0 0 0 0 4
10 0 0 2 0 3

Table 4 Confusion Matrix

Class

Decision

56 3 2 10 4
0 26 1 0 2
3 4 46 0 2
0 0 0 15 0
0 6 0 7 40
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Fig. 11. Reliability and rejection rates.

The HMM log-likelihoods at the gate and the experts for the training data of a given class are
shown in Fig. 12. The x-axis shows the difference of the log-likelihoods between two experts. The
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y-axis shows the log-likelihoods obtained from the gate HMMs. In this plot, every two gate HMMs
were assumed to specialize in one class (HMMs 1&2 describe class 1, HMMs 3&4 describe class
2 and so on), which is consistent with the initialization process. The gate HMMs define a context,
and the expert HMMs specialize within these contexts. For each class, at least one gate associated
with each class produces a “high” log-likelihood for almost all samples (where high here means
above about -3). As a result, in most classes, the experts and the gate complement each other
resulting in the butterfly effect: if a gate/expert pair performs poorly in a region of the space, the
other gate/expert pair performs better and dominates the classification decision. The effect is more
pronounced in classes 2 and 5. For example, in the case of class 2, if gate 3 is high, then expert 3
is high and if gate 4 is high, then expert 4 is high. To be clear, the gate HMMs are not designed to
be classifiers; they are designed to model contexts. On the other hand, it is interesting to note that
the gates do contain classification information.

Fig. 12. The log-likelihoods of sequences of a given class at the gate and the experts. The x-
axis shows the difference of the log-likelihoods between two experts. The y-axis shows the log-
likelihoods of the gate HMMs.

7.4. Analysis of internal structure of MHMME

In this section, we compare MHMME to the components of MHMME as well as to the computing
models. Similar to the previous section, our goal is to understand what is gained by the full
MHMME model beyond what can be achieved by the individual components. In particular, we
compare MHMME to the (i) Cl-HMM model used to initialize the MHMME, (ii) ME-only and
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HMM-only models, and (iii) gate and experts when they are used individually as classifiers. The
methods for using components as classifiers are briefly described below.

• PCA+ME: To use the standard ME, the vectors in each sequence are concatenated to form a
high-dimensional vector. Since sequences have variable lengths, they are resampled to length
110. Principal component analysis (PCA) is used to reduce dimensionality to 10. These
feature vectors are used to train a standard ME model [16, 17].

• PCA+VMEC: The same as above except variational ME is used for classification (VMEC)
[37] with γ hyperparameters set to 1.
In the next four classifiers, a test sequence is assigned to the class corresponding to the HMM
that yields the highest log-likelihood.

• HMM: Baum-Welch is used to train one HMM per class.

• Cl-HMM: This method was described in Sec. 6.1. Two HMMs are constructed for each class.

• Gate: The gate HMMs of the full MHMME model are used as classifiers to test their indi-
vidual performance. Every two gate HMMs are assumed to describe a class (HMMs 1&2
describe the first class, HMMs 3&4 describe the second class and so on).

• Experts: Each expert HMM is used as a classifier.

• HMM + MAP [4]: One HMM is learned per class. Then classification of an unlabeled se-
quence is performed by maximum-a-posteriori (MAP) approach.

Classification rates are given in Table 5. The mean and standard deviation of 20 classifica-
tion rates calculated from 20 independent training runs, each of which employed a 2-fold cross-
validation. Note that there are 5 classes so randomly assigning samples to classes should yield
an average classification rate of 20%. Among these classifiers, PCA+ME and PCA+VMEC are
the two ME-only methods, whereas HMM and Cl-HMM are the two HMM-only methods. When
compared to these, MHMME performs far better than the HMM-only and the ME-only methods.

The results are consistent with those of the landmine data. First, MHMME significantly in-
creases the classification rates beyond those obtained by the components. Second, when the Gate
and Cl-HMM rates are compared, it can be observed that the gate worked towards the goal of in-
creasing the overall probability of the gate and experts combined in an MHMME. These results
again show that it is not the experts or the gate alone, but rather it is their combination in the
MHMME model that gives good classification rates.

Table 5 Classification rates on the CP dataset for 2-fold cross-validation training on 20 runs

Model Mean Std. Dev.
PCA + ME [17] 0.43 0.01
PCA + VMEC [37] 0.44 0.01
HMM 0.41 0.05
Cl-HMM [28] 0.61 0.03
HMM + MAP [4] 0.57 0.008
Gate 0.59 0.08
Experts 0.53 0.04
MHMME 0.73 0.02
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These results indicate that MHMME is useful for datasets that have multiple contexts that are
interlaced between classes. It allows the simultaneous probabilistic learning of the sub-regions
from multi-class data and the discriminative classification of the data in these sub-regions. The
soft partitioning is provided by the gate whereas the discriminative classification is performed at
the experts. One direct consequence of soft partitioning of the data should be emphasized: HMMs
at each expert are affected by all the data points, but the effect of each data point is weighted by
the gate. Therefore, even if a sequence does not have a high weight as determined by the gate, it
still affects the experts’ decision but with a lower weight. In this way, HMMs are less prone to
over-fitting than other models that use hard clusters of the data while specializing in a context.

8. Conclusion

In this study, we addressed the problems encountered when designing classifiers for classes that
contain multiple subclasses whose characteristics are dependent on the context. It is sometimes
the case that when the appropriate context is chosen, classification is relatively easy, whereas in
the absence of contextual information, classification may be difficult. Therefore, in this study,
simultaneous learning of context and classification has been addressed for sequential data, and the
mixture of hidden Markov model experts has been developed. The updates of HMM parameters
in an ME framework have been derived, and the benefits of ME have been extended to time-series
data. The MHMME model allows for the simultaneous probabilistic learning of the sub-regions
from multi-class sequential data and the discrimination of the classes in these sub-regions. The
output is a mixture of the HMM decisions, but the mixture coefficient is not fixed once it is learned,
rather it depends on the input data. The MHMME model has been applied to a synthetic dataset,
to the CP data as well as the landmines data. It has been shown that the combination of ME and
HMM models in the MHMME model increases the performance of any single classifier. When
compared to its individual components, i.e. the HMMs at the experts and at the gate, MHMME
combination increases the classification rates. In addition, it has been shown that MHMME can do
well in comparison to competing models.

In this work, the number of experts and the number of states were selected experimentally such
that the initialization starts at a higher rate for the landmine data. For the CP dataset, it was selected
based on the literature. In the future, it would be worthwhile to investigate the sampling methods
for training as opposed to EM, the optimum number of experts and the optimum number of states.
In addition, it would be interesting to see whether or not another level of hierarchy would increase
the classification rates for data that have a deeper level of contexts. Also, the MHMME model
herein uses discrete HMMs, but it would be worthwhile to investigate the update equations using
continuous HMMs.
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