
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

CVPR
#193

CVPR
#193

CVPR 2006 Submission #193. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Level Set Segmentation using Statistical Shape Priors

Anonymous CVPR submission

Paper ID 193

Abstract

A novel and robust 3-D segmentation approach is proposed
using level sets based on shape constraints. The approach de-
pends on both the gray level and shape information. A partial
differential equation (PDE) is developed to control the evolu-
tion of the level sets. The PDE does not include weighting co-
efficients to be tuned, overcoming the disadvantages of other
PDE approaches. The shape information is gathered from a
set of the signed distance maps representing the training data
as a histogram of the occurrences of the points inside and out-
side the object. We use a novel statistical approach to get a
probability density function (pdf) for the signed distance map
of the points inside and outside and also the distribution of
gray level inside and outside the object. The proposed sta-
tistical approach is based on modelling the empirical density
function (normalized histogram of occurrence) for either the
gray level distribution or signed distance map with a linear
combination of Gaussians (LCG) with positive and negative
components. We modify an Expectation-Maximization (EM)
algorithm to deal with the LCGs and also propose a novel
EM-based sequential technique to get a close initial LCG ap-
proximation for the modified EM algorithm to start with. The
pdf’s of the signed distance and intensity gray level are em-
bedded in the speed function of the level set specifying the
direction of evolution. Experimental results show how the ap-
proach is accurate in segmenting different types of 2-D and
3-D data sets including medical images.

1. Introduction

Surgical planning, navigation, medical visualization and
diagnostics all benefit from image segmentation; and level
sets segmentation has retained its attention (see [1, 2, 3, 4, 5, 6,
7]) due to their topological flexibility and independence of the
parameterizations of the evolving contour. However, segmen-
tation process is still a challenge because of the image noise
and inhomogeneities; therefore segmentation algorithms can
not depend only on image information but also have to ex-
ploit the prior knowledge of shapes and other properties of
the structures to be segmented.

The incorporation of shapes and deformable models be-
came popular with Leventonet al.[8, 9] and Shenet al. [10]

by attracting the level set function to the likely shapes from a
training set specified by principal component analysis (PCA).
Recently, the approach of [8] was extended in [11, 12] and
[13]. In [11], shapes are represented with a linear combina-
tion of 2D distance maps where the weight estimates maxi-
mize the distance between the mean gray values inside and
outside the shape. In [12], the idea is to use a determinis-
tic model to represent the desired shape as a linear combina-
tion of the weighted signed 2D distance maps, the weights be-
ing estimated by minimizing a mutual information based cost
function. However, as noted in [11], the space of distance
maps is not closed with respect to linear operations, so that
the distance map for zero level shape of a linear combination
of the maps does not necessarily coincide with the latter com-
bination. As a result, the model may produce an unpredictable
shape.

The training shapes are represented with the like linear
combination of the training signed 2D distance maps also
in the papers of a second research group [13]. Here, all the
shapes are described with a multidimensional Gaussian prob-
ability model of the weights in the linear combination. But
apart from a probabilistic description, the model has similar
inconsistencies.

In [14], registration is combined with the segmentation
process in an energy minimization problem. The evolving
curve/surface is embedded in a higher dimensional level set
function and registered iteratively with a shape model. In
[15], a 3D shape-segmentation approach is proposed where
a shape model is built from a set of training shapes using dis-
tance functions. A level set function evolves minimizing the
shape alignment energy and the intensity gray level.

In this paper, a novel and robust segmentation approach
is proposed based on the level set technique with shape con-
straints. The segmentation approach depends on both gray
level intensity and shape information; whereas the shape in-
formation is gathered from a set of training shapes. A signed
distance function is assigned to each shape and the signed
distance values are collected in the form of a histogram rep-
resenting the occurrences of each value. Probability density
functions of the object and background are formed based on
the signed distance value in addition to the gray level intensity.
These functions are estimated using our new approach known
as the modified expectation maximization (EM) which esti-
mates the density function by a linear combination of Gaus-
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sians (LCG) with positive and negative components. The es-
timated pdf’s are used in a variational approach making the
segmentation accurate and fast.

2. Shape Modelling by Level Sets

Shape representation is the main task in shape analysis.
The selection of such representation is very important in sev-
eral computer vision and medical applications such as regis-
tration and segmentation. There are several ways described in
[8, 16, 17]. Although some of these ways are powerful enough
to capture local deformations, they require a large number of
parameters to deal with important shape deformations. So an
emerging way to represent shapes is derived using level sets
[18]. This representation is invariant to translation and rota-
tion. Given a curve/surfaceV that represents boundaries of a
certain shape, we can define the following level set function:

φ(x, y, z) =





0, (x, y, z) ∈ V
d((x, y, z), V ) (x, y, z) ∈ RV

−d((x, y, z), V ) Otherwise
(1)

where RV is the region defined by the shape and
d((x, y, z), V ) is the minimum Euclidean distance between
the image location(x, y, z) and the curve/surfaceV .

Such representation can account for local deformations
that are not visible for iso-contours that are far away from
the original shape, and for geometrical features of the shape
that can also be derived naturally from this representation.

By this representation, we can construct a database of
curves/surfaces and signed distance functions that represent
variations for a certain shape. So, given a set of aligned
curves/surfacesV1, ..., VN , level setsφ1, ..., φN are calculated
as training data. From this information, we can extract a his-
togram of the occurrences of signed distance values which
characterizes the shape and its local variations. Also, a mean
curve/surfaceVM is calculated as an average of the corre-
sponding points of all the training curves/surfaces. Simply,
we can get this curve/surface by picking each point in the first
training curve/surface and get the nearest points in the other
curves/surfaces, then calculate the average as follows:

VM (xj , yj , zj) =
1
N

N∑

i=1

Vi(xi, yi, zi), (2)

where(xi, yi, zi) are the corresponding points.

3. Curve/Surface Evolution and Level Sets

Within the level set formalism [19, 20], the evolving
curve/surface is a propagating front embedded as the zero
level of a scalar functionφ(x, y, z, t). The continuous change
of φ(x, y, z, t) can be described by the partial differential
equation:

∂φ(x, y, z, t)
∂t

+ F (x, y, z)|∇φ(x, y, z, t)| = 0, (3)

where F (x, y, z) is a velocity function and∇ =
[ ∂
∂x , ∂

∂y , ∂
∂z ]T . The functionφ(x, y, z, t) deforms iteratively

according toF (x, y, z), and the position of the 2D/3D front is
given at each iteration by solving the equationφ(x, y, z, t) =
0. Practically, instead of Eq.(3), the valueφ(x, y, z, tn+1) at
stepn + 1 is computed fromφ(x, y, z, tn) at stepn by the
relation:

φ(x, y, z, tn+1) = φ(x, y, z, tn)−4t · F |∇φ(x, y, z, tn)|.
(4)

The design of the velocity functionF (x, y, z) plays the major
role in the evolutionary process. Among several formulations
proposed in [21, 22], we have chosen the following formula-
tion:

F (x, y, z) = ν − εk(x, y, z), (5)

whereν = 1 or−1 for the contracting or expanding front re-
spectively,ε is a smoothing coefficient which is always small
with respect to1, andk(x, y, z) is the local curvature of the
front. The latter parameter acts as a regularization term.

4. Statistical Model for Density Estimation

In this paper we introduce a new algorithm called a mod-
ified Expectation-Maximization algorithm that approximates
an empirical probability density function of scalar data with
a linear combination of Gaussians (LCG) with positive and
negative components. Due to both positive and negative com-
ponents, the LCG approximates inter-class transitions more
accurately than a conventional mixture of only positive Gaus-
sians.

This approach is suitable for estimating the marginal den-
sity for either the gray level distributionpg(q) or signed dis-
tancesps(d) in each region in the given image. In the fol-
lowing section we will describe this model for estimating the
marginal density for the gray level distributionpg(q) in each
region and the similar way can be used to estimate the density
of the signed distancesps(d) in the given image.

To identify the model accurately, we approximate the
marginal gray level probability density in each region with
a LCG havingCp,i positive andCn,i negative components:

pg(q|i) =
Cp,i∑
r=1

wp,i,rϕ(q|θp,i,r)−
Cn,i∑

l=1

wn,i,lϕ(q|θn,i,l); (6)

such that
∫∞
−∞ pg(q|i)dq = 1. Here,q is the gray level, and

ϕ(q|θ) is a Gaussian density having a shorthand notationθ =
(µ, σ2) for its mean,µ, and variance,σ2. In contrast to more
conventional normal mixture models, the components are now
both positive and negative and have only one obvious restric-
tion in line with Eq. (6):

∑Cp,i

r=1 wp,i,r −
∑Cn,i

l=1 wn,i,l = 1.
These weights are not the prior probabilities, and the LCG of
Eq. (6) is considered as a functional form of the approxima-
tion of a probability density depending on parameters(w, θ)
of each component.
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The mixture ofK LCGs,p(q) =
∑K

i=1 wip(q|i), has the
same form but a larger number of components, e.g.,Cp =∑K

i=1 Cp,i andCn =
∑K

i=1 Cn,i if all the valuesθp,i,r and
θn,i,l differ for the individual models:

pg(q) =
Cp∑
r=1

wp,rϕ(q|θp,r)−
Cn∑

l=1

wn,lϕ(q|θn,l) (7)

To identify this model in the unsupervised mode, the mixed
empirical distribution of gray levels over the image has to be
first represented by a joint LCG of Eq. (7) and then partitioned
into individual LCG-models for each classi = 1, . . . ,K.

Under the fixed number of the positive and negative com-
ponents,C, the model parametersw = {wc; c = 1, . . . , C}
andΘ = {θc : c = 1, . . . , C} maximizing the image likeli-
hood can be found using an EM algorithm introduced in Sec-
tion 4.1. It modifies the conventional EM-scheme to take ac-
count of the components with alternating signs.

The modified EM algorithm is sensitive to both its initial
state specified by the numbers of positive and negative Gaus-
sians, and the initial parameters (mean and variance) of each
component. To find a close initial LCG-approximation of the
empirical distribution, we develop in Section4.2a sequential
initializing EM-based algorithm.

4.1. Modified EM Algorithm for LCGs

Let f(q), q ∈ Q be an empirical relative frequency distri-
bution representing an unknown probability density function
ψ(q) such that

∫∞
−∞ ψ(q)dq ≡ ∑Q

q=0 f(q) = 1. We assume
thatf(q) is approximated by an LCGPg:w,Θ with Cp positive
andCn negative componentsϕ(q|θ):

pg:w,Θ(q) =
Cp∑
r=1

wp,rϕ(q|θp,r)−
Cn∑

l=1

wn,lϕ(q|θn,l) (8)

In line with Eq. (8), the positive weightsw are restricted as
follows:

Cp∑
r=1

wp,r −
Cn∑

l=1

wn,l = 1 (9)

We also assume here that the numbersCp andCn of the com-
ponents of each type are known after the initialization in Sec-
tion 4.2 and do not change during the EM process. The ini-
tialization provides also the starting parameter valuesw[0] and
Θ[0].

The probability densities form a proper subset of the set
of the LCGs due to the additional restrictionpw,Θ(q) ≥ 0,
which holds automatically only for probability mixtures with
no negative components.

The LCG that provides a local maximum of the log-
likelihood of the empirical data:

L(w,Θ) =
∑

q∈Q

f(q) log pg:w,Θ(q) (10)

can be found using the iterative block relaxation process ex-
tending conventional EM schemes.

Let p
[m]
g:w,Θ(q) =

∑Cp
r=1 w

[m]
p,r ϕ(q|θ[m]

p,r ) −∑Cn
l=1 w

[m]
n,l ϕ(q|θ[m]

n,l ) be the LCG at step, or iterationm.
Relative contributions of each data itemq = 0, . . . , Q
into each positive and negative Gaussian at the stepm are
specified by the following respective conditional weights

π
[m]
p (r|q) = w[m]

p,r ϕ(q|θ[m]
p,r )

p
[m]
g:w,Θ(q)

; πn(l|q) =
w

[m]
n,l ϕ(q|θ[m]

n,l )

p
[m]
g:w,Θ(q)

Cp∑
r=1

π
[m]
p (r|q)−

Cn∑
l=1

π
[m]
n (l|q) = 1; q = 0, . . . , Q

(11)

Using these weights, the log-likelihood of Eq. (10) can be
rewritten in the equivalent form:

L(w[m],Θ[m]) =
Q∑

q=0
f(q)[

Cp∑
r=1

π
[m]
p (r|q) log p

[m]
g:w,Θ(q)]

−
Q∑

q=0
f(q)[

Cn∑
l=1

π
[m]
n (l|q) log p

[m]
g:w,Θ(q)](12)

where log p
[m]
g:w,Θ(q) in the first and the second brack-

ets should be replaced with the equal terms:log w
[m]
p,r +

log ϕ(q|θ[m]
p,r )− log π

[m]
p (r|q) andlog w

[m]
n,l + log ϕ(q|θ[m]

n,l )−
log π

[m]
n (l|q), respectively.

The block relaxation converging to a local maximum of the
likelihood function in Eq. (12) repeats iteratively the follow-
ing two steps:

1. E-step[m + 1]: to find the parametersw[m+1], Θ[m+1]

by maximizing L(w,Θ) under the fixed conditional
weights of Eq. (11) for the stepm, and

2. M-step [m + 1]: to find these latter weights by max-
imizing L(w,Θ) under the fixed parametersw[m+1],
Θ[m+1]

until the changes of the log-likelihood and all the model pa-
rameters become small.

The E-step performs the conditional Lagrange maximiza-
tion of the log-likelihood of Eq. (12) under the restriction of
Eq. (9) to obtain the following estimates of the weights:

w[m+1]
p,r =

∑

q∈Q

f(q)π[m]
p (r|q); w

[m+1]
n,l =

∑

q∈Q

f(q)π[m]
n (l|q)

Then the parameters of each Gaussian are obtained by the
unconditional maximization just as in the conventional EM
scheme (below “c” stands for “p” or “ n”, respectively):

µ
[m+1]
c,r = 1

w
[m+1]
c,r

∑
q∈Q

q · f(q)π[m]
c (r|q)

(σ[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑
q∈Q

(
q − µ

[m+1]
c,i

)2

· f(q)π[m]
c (r|q)

The M-step performs the conditional Lagrange maximiza-
tion of the log-likelihood of Eq. (12) under theQ + 1 re-
strictions of Eq. (11), and determines the conditional weights

3
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π
[m+1]
p (r|q) andπ

[m+1]
n (l|q) of Eq. (11) for all r = 1, . . . , Cp;

l = 1, . . . , Cn andq = 0, . . . , Q. The modified EM-algorithm
is valid until these weights are strictly positive, and the initial
LCG-approximation should comply to this limitation. The
iterations have to be terminated when the log-likelihood of
Eq. (12) begins to decrease.

4.2. Sequential EM-Based Initialization

We assume that the number of dominant modes is equal
to the given number of classes. To simplify the notation, let
the empirical distribution have only two separate dominant
modes representing the object and the background, respec-
tively. The algorithm we present below is easily extended
to the general case ofK > 2 dominant modes. We as-
sume that each dominant mode is roughly approximated with
a single Gaussian and the deviations of the empirical density
from the two-component dominant Gaussian mixture are de-
scribed by other components of the LCG in Eq. (7). There-
fore the model has the two dominant positive weights, say,
wp,1 and wp,2 such thatwp,1 + wp,2 = 1, and a number
of “subordinate” weights of smaller absolute values such that∑Cp

r=1 wp,r −
∑Cn

l=1 wn,l = 0.
The following sequential algorithm allows for estimating

both the weights and parameters of the individual Gaussians
in the latter LCG model, including the number of the non-
dominant components.

1. Approximate a given empirical distributionf(q), of gray
levels in the given image, with a dominant mixturep2(q),
of two Gaussians using the conventional EM-algorithm.

2. Find the deviations∆ = [∆(q) = f(q)−p2(q) : q ∈ Q]
betweenf(q) andp2(q) and split them into the positive
and negative parts such thatδ(q) = δp(q)− δn(q):

∆p = [δp(q) = max{δ(q), 0} : q ∈ Q}
∆n = [δn(q) = max{−δ(q), 0} : q ∈ Q} (13)

3. Compute the scaling factor for the deviations:scale =∫∞
−∞ δp(q)dq ≡ ∫∞

−∞ δn(q)dq.

4. If the factor s is less than a given accuracy threshold,
terminate and return the modelpg(q) = p2(q).

5. Otherwise consider the scaled-up absolute deviations
1

scale∆p and 1
scale∆n as two new “empirical densities”

and iteratively the conventional EM-algorithm to find
sizesCp and Cn of the Gaussian mixtures,pp(q) and
pn(q), respectively, approximating the scaled-up devia-
tions. The size of each mixture corresponds to the mini-
mum of the integral absolute error between the scaled-up
absolute deviation∆p (or ∆n) and its modelpp(q) (or
pn(q)). The number of the components is increasing se-
quentially by unit step while the error is decreasing.

6. Scale down the subordinate modelspp(q) andpn(q) (i.e.
scale down the weights of their components) and add
the scaled modelpp(q) to and subtract the scaled model
pn(q) from the dominant modelp2(q) in order to form
the desired modelpg(q) of the sizeC = 2 + Cp + Cn.

Since the EM algorithm converges to a local maximum of
the likelihood function, it may be repeated several times with
different initial parameter values for choosing the model giv-
ing the best approximation. In principle, this process can be
repeated iteratively in order to approximate more and more
closely the residual absolute deviations betweenf(q) and
pg(q). But because each Gaussian in the latter model impacts
all the valuesp(q), the iterations should be terminated when
the approximation quality begins to decrease.

The final mixed LCG-modelpg(q) has to be split intoK
LCG-submodels, one per class, by associating each subordi-
nate component with a particular dominant term in such a way
as to minimize the expected misclassification rate. To illus-
trate the association principle, let us consider the bi-modal
case with the two dominant Gaussians having the mean val-
uesµ1 andµ2; 0 < µ1 < µ2 < Q. Let all the subordinate
components be ordered by their mean values, too. Then let
those with the mean values smaller thanµ1 and greater than
µ2 relate to the first and second class, respectively. The com-
ponents having the mean values in the range[µ1, µ2] are as-
sociated with the classes by simple thresholding such that the
means below the threshold,t, belong to the components as-
sociated with the first class. The desired threshold minimizes
the classification errore(t):

e(t) =

t∫

−∞
pg(q|2)dq +

∞∫

t

pg(q|1)dq. (14)

5. Evolutionary Curve/Surface Model

The term(ν = ± 1) in Eq.( 5) specifies the direction of
the front propagation. Several approaches were developed to
make all fronts either contracting or expanding (see, e.g., [23])
in order to evolve in both directions and avoid overlaps be-
tween the regions.The problem can be reformulated as classi-
fication of each point at the evolving front. If the point belongs
to the associated class (object), the front expands otherwise it
contracts.

5.1. PDE System

The classification decision is based on Bayesian deci-
sion [24] at voxel (x, y, z) at the front. The term(ν) for
each point is replaced by the functionν(x, y, z) so the ve-
locity function is defined as:

F (x, y, z) = ν(x, y, z)− ε · k(x, y, z). (15)

where

ν(x, y, z) =
{ −1 if pg(q|1) ∗ ps(d|1) > pg(q|2) ∗ ps(d|2)

1 otherwise
(16)
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If the voxel (x, y, z) belongs to the object, the front will
expand, otherwise it will contract. Now, we put the Eq.(3)
in the general form using the derivative of the Heaviside step
function (δα(.))([25]) as follows :

∂φ(x, y, z, t)
∂t

=
(
ε · k(x, y, z)− ν(x, y, z)

)

× δα(x,y,z)

(
φ(x, y, z)

)∣∣∇φ(x, y, z)
∣∣ .(17)

The functionδα(.) selects the narrow band points around the
front and the parameterα controls the width of the narrow
band.

5.2. Registration Step

To make the proposed approach of shape-based segmenta-
tion invariant for the scaling, rotation, and translation of the
object, the first step of the proposed approach is to align the
image with any image from our aligned database. The defor-
mations that we use are defined using the Free Form Defor-
mations (FFD) as explained in [26]. The essence of FFD is
to deform an object by manipulating a regular control lattice
overlaid on its volumetric embedding space. One of the main
advantages of the FFD technique is that it imposes implicit
smoothness constraints during deformation, since it guaran-
tees continuity at control points and continuity elsewhere.
Therefore there is no need to introduce computationally ex-
pensive regularization components on the deformed shapes.

5.3. Algorithm

1. Estimate the pdf’s of the object and background for the
intensity gray level and shape signed distance values us-
ing the modified EM.

2. Register the image with any one of the aligned images
from the database.

3. Initialize the level set function.

4. Mark the points of the narrow band.

5. For each point calculate the signed distance value (d) as
the minimum Euclidean distance fromVM .

6. If ps(d|1) ∗ pg(q|1) > ps(d|2) ∗ pg(q|2), then the front
expands at this point, otherwise it contracts.

7. Go to step 4. This process is repeated until the change in
the level set function is not significant.

6. Experimental Results

We illustrate the performance of the proposed techniques
by applying it on different 2-D and 3-D data sets. The first ex-
ample which we show is the segmentation of starfish. The
segmentation separates starfish from the surrounding back-
ground so that each image has only two dominant objects
(K = 2): the darker background and the brighter starfish.
Figure 1(a) demonstrates one of the aligned starfish images

from our database. Figure1(b) shows one of the starfish im-
ages that we need to segment. Figure1(c) shows the result of
the registering the image shown in (a) to image in (b) using
the algorithm proposed in [26].

(a) (b) (c)
Figure 1.(a) One of the aligned starfish images from the database,
(b) Non-aligned image of starfish, (c) Results of the registration of
(a) and (b)
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Figure 2.(a) Empirical densityf(q) approximated with the two dom-
inant Gaussian componentspg:2(q) for the image shown in Fig.1(b),
(b) Deviation and absolute deviation betweenf(q) andpg:2(q), (c)
Estimating the number of subordinate mixture, (d) Estimated density
for the absolute deviation

Figure2 illustrates the sequential EM-based initialization,
(a) the empirical density of starfish image shown in Fig.1(b)
and the initial mixture of two Gaussians approximating the
dominant modes, (b) the deviation between the empirical den-
sity f(q) and the mixture of the two dominant components
pg:2(q), (d) the estimated density of the scaled deviation us-
ing the six Gaussian components which give the minimum
error between the estimated density for the deviation and the
empirical deviation as shown in Fig.2(c).

Figure3 presents the final LCG-model and its 8 compo-
nents obtained by the modified algorithm as well as the suc-
cessive changes of the log-likelihood. The first 10 iterations
of the refining EM-algorithm increase the log-likelihood of
Eq. (12) from −4 to −2.9; then the modified EM algorithm
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Figure 3.(a) Final density estimation of the bi-modal distribution,
(b) The dynamic changes of the log-likelihood of the modified EM
algorithm, (c) All components of the final LCG, (d) The marginal
density estimation for each class.
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Figure 4.(a) Average signed distance of aligned star images, (b) Final
estimated density, (c) The marginal density estimation for each class.

terminates since the log-likelihood begins to decrease. The
minimum classification error of 0.00018 between the starfish
and the background for the final LCG-model is obtained with
the thresholdt = 82 in Eq. (14). In this case the LCG-
components 1–3 and 4–6 correspond to the starfish and the
background, respectively.

Figure4(a) shows the average signed distance of all aligned
segmented starfish. We used the approach as discussed in
the previous sections to estimate the marginal density that de-
scribes the distribution of signed distance inside and outside
the starfish object. The results of this approach are shown in
Fig. 4(b) and (c).

Figure 5 shows the result of our proposed segmentation
approach with error of 0.4% with the ground truth.

In the following part, we test the proposed segmentation
approach on 3D data sets to show that it can work robustly
for 3D images as well. To get an accurate 3D shape model of
the lateral ventricles of the brain, the 3D images were taken
from 20 subjects. However, 20 data sets are not enough to
get an accurate shape for the ventricles because the ventricles
vibrate during the MRI or CT scans. Therefore, to cover all
the shape variations of the brain ventricles for each subject,

(a) (b) (c)
Figure 5.(a) The initialization of the level sets function to segment
the aligned starfish shown in Fig.1(c), (b) The segmentation of the
aligned image, (c) The final segmentation of starfish after multiply-
ing the aligned starfish image by the inverse of the transformation
function (which we used in the rigid registration) with error 0.4%
with the ground truth.

we performed finite element analysis on the motion of the real
brain ventricles.

For finite element analysis of the ventricle shape changes,
we assume the cerebrospinal fluid (CSF) inside lateral ventri-
cles is isotropic and linear elastic. So, the linear elastic me-
chanical model is employed for finite element analysis. The
Young’s modulus of CSF is 1000 Pascals and the Poisson ra-
tio is 0.499 ([27]). For adults, the pressure of CSF under nor-
mal conditions can range between50 and180 mmH2O. The
median pressure115 mmH2O of the CSF should be the one
most people have statistically. Therefore, we apply the uni-
form pressure115 mmH2O over the surfaces of the ventricles
for each subject, and perform finite element analysis to cap-
ture the variation of the ventricles. After finite element anal-
ysis, the 3D structure is re-sliced and 10 states of the ventri-
cles are obtained resulting in20 subjects× 10 states = 200
datasets for the ventricles. The four states of one subject’s
ventricles are shown in Fig.6. Using the resulting 200 datasets
for the ventricles, we are following our density estimation ap-
proach to estimate the density of the gray level distribution
and the signed distance map inside and outside the ventricles.
In this estimation, we are considering that the brain MRI con-
sists of two classes: one class is composed of the gray matter,
white matter, fat and bones; and the other class is the CSF of
the brain (inside and outside the ventricles). The results of
density estimation using the proposed approach are shown in
Fig. 7 and the segmentation results at different signal to ra-
tios (SNR) (obtained by adding Gaussian noise with different
variance) are shown in Fig.8.

(a) (b) (c) (d)

Figure 6.The four states of the real ventricles at t = 0 sec, 0.7 sec,
0.9 sec, 1.1 sec (final) from left to right and top to bottom.
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Figure 7.(a) Final density estimation for the mixed frequency gray
level distribution, (b) The class model of gray level for each class,
(c) Final density estimation for the sign map inside and outside the
3-D brain ventricle, (d) The final class model of signed distance map
for each class.

(a) (b) (c) (d)

Figure 8. (a) Results of our segmentation approach at SNR = 28dB,
error = 0.23% (b) SNR = 7.8dB,error = 0.9% (c) SNR = -
1.9dB, error = 4.8%. (d) Result of the segmentation errors us-
ing the conventional EM algorithm as a density estimator at SNR =
28dB,error = 18.8%. The errors are shown in red.

The hand segmentation of the radiologists may not always
be accurate because of hand shaking. Therefore, to get ac-
curate evaluation of our proposed approach, we are using a
ventricle phantom that resembles the geometrical structure of
the real ventricles. To use the mould ventricle phantom, it is
scanned using cone-beam CT machine so that the scans can be
used for finite element simulation. Following the same proce-
dure of the ventricle motion estimation as described above, we
captured all the variations of the motion of the phantom ven-
tricles. Figure9 shows the four states of this ventricle phan-
tom. The shape changes of the ventricles for the subject and
the ventricle phantom are recorded in short videos that will be
supplemented.

For the database that was obtained from the geometrical
phantom, the inverse mapping method was used to get the
same gray level distribution as of the real ventricles; the gray
level distribution of which was shown in Fig.7(b). The final
step of our algorithm is to estimate the pdf that describes the
signed distance map inside and outside the geometrical phan-

(a) (b)

(c) (d)

Figure 9.The four states of the phantom ventricles at t=0 sec, 0.4
sec, 0.7 sec, 1 sec (final) from left to right and top to bottom.
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(a) (b)

Figure 10.(a) Final density estimation for the sign map inside and
outside the 3-D ventricle phantom, (b) The final class model of
signed distance map for each class.

tom. The results of our modified EM algorithm are shown in
Fig. 10. Figure11 shows the results of our segmentation for
the geometrical phantom at different signal to noise ratios and
the errors are calculated with respect to the ground truth from
the phantom.

(a) (b) (c)

Figure 11.Segmentation using our approach at different SNR (a)
SNR = 28dB, error = 0.01%, (b) SNR = 7.8dB, error =
0.8% (c) SNR = −1.9dB, error = 3.68%.

7. Conclusion

We have presented a segmentation approach that depends
on both the intensity gray level and the shape information.
Our modified EM is used to estimate the density distribution
of the intensity and signed distance values. The density distri-
butions are embedded in the PDE that controls the evolution
of the level set function. We consider the registration between
the average shape (2D/3D) and the object to be segmented as
a basic step in our approach. Unlike the other approaches, our
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segmentation does not need energy minimization avoiding the
local minimum problem. Different types of images are used
and the results are promising. This technique is very suitable
to segment the anatomical structures that have noise and in-
homogeneity problems.

This algorithm is very robust and accurate, it is invariant
to translation, rotation and scaling. Therefore, the presented
segmentation algorithm is not only useful for medical imag-
ing society but also for the computer vision applications. Our
future work will include the segmentation of 2D and 3D color
objects.
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