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This research addresses the problems encountered when designing classifiers

for classes that contain multiple subclasses whose characteristics are dependent on

the context. It is sometimes the case that when the appropriate context is chosen,

classification is relatively easy, whereas in the absence of contextual information,

classification may be difficult. Therefore, this research focuses on simultaneous learning

of context and classification.

One area where such problems are encountered is landmine detection. The signals

collected by radar and metal detector systems show a lot of variability depending on

a number of factors. Some of these factors can be listed as follows: (i) landmines are

diverse in terms of their physical properties (large, small, plastic, metal), (ii) they may

be buried at various depths in the ground (shallow, deep), (iii) they may be covered with

clutter (stones, bushes, bottles, etc.), and (iv) the signals collected from these mines in

different environments show a huge variability based on temperature, humidity, and soil

conditions. When all of these factors are combined, one mine may look more similar to

a mine of a different type (or to metallic clutter) than to itself in a different environment.

Moreover, the exact reason that caused this confusion may not be always clear nor

available. In such cases, a group of data that looks similar based on some unknown

factor defines a context, and machine learning algorithms are needed to find these
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contexts and to learn classifiers within each context for a mine versus non-mine decision

to be made.

The mixture of experts (ME) model is suitable for problems such as the landmine

detection that require context-based classification. During training, ME simultaneously

learns the contexts and expert classifiers within each context all within one probabilistic

framework. In initial experts applying standard ME model to landmine detection,

significantly increased classification rates were achieved providing insightful parameters

that can be understood by a system operator. However, two problems are encountered

with the ME model. The first problem is over-fitting, which means that the model could

be learning noise, and it may not generalize to future data. To prevent over-fitting, the

variational mixture of experts model for multi-class classification is developed, and the

lower bound associated with the model is derived. The lower bound provides a measure

of correctness, and is used as an excellent stopping criterion. The second problem

is that the ME model is not suitable for time series or sequential data as it requires

fixed-length features and it cannot represent the dependency between a sequence

of observations. To overcome these issues, a novel model, mixture of hidden Markov

model experts (MHMME) has been introduced. The MHMME model can divide time

series data into meaningful contexts, and learn an expert hidden Markov model (HMM)

for each of these contexts. Although motivated by landmine detection, MHMME is a

general method. Our experiments on multiple real and synthetic datasets show that

MHMME can perform better than ME and HMMs, and can do well in comparison to

state-of-the-art models.
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CHAPTER 1
INTRODUCTION

Many datasets in the real world show different patterns based on multiple contexts.

For example, electricity usage has seasonal patterns, and within each season electricity

consumption of socio-economic groups shows different patterns. In this example,

both the seasons and the socio-economic groups define the contexts for electricity

consumption. In electrocardiogram (EKG) heartbeat classification, ethnic and social

groups define a healthy beat. For example, athletes typically have slower resting

heartbeats. In handwriting recognition, a single character may be impossible to read

without the context of the word in which it appears.

The aforementioned problems are also encountered in landmine data so it is

difficult to represent the class of all mines with a single model. Going one step deeper,

one can think of the class of all mines to have multiple subclasses such as high metal

anti-tank (HMAT) mines, low metal anti-tank (LMAT) mines, high metal anti-personnel

(HMAP) mines, and low metal anti-personnel (LMAP) mines. However, the features of

these subclasses are interlaced, so it is also difficult to appoint a model as an expert to

identify a particular subclass of mines [1, 2]. Furthermore, the data might be available

from multiple sources. For example, in landmine detection, there are two types of

sensors that are widely used: ground penetrating radars (GPR) and metal detectors –

also known as electromagnetic induction (EMI) sensors. While the HMAP and HMAT

mines can appear similar to a metal detector, they may look quite different to a GPR

sensor. Similarly, given an object with a low energy EMI signature, GPR will be better at

distinguishing between the LMAP mines and clutter.

One approach to building classifiers for which there are multiple contexts is to have

expert models for each context. Unfortunately, contexts are generally hard to define,

they are often interlaced, and do not have sharp boundaries. Moreover, contextual

information might be inherent in the data, but unknown to the data modeler. Therefore,
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the classifier should be able to learn both the context and the experts, ideally in a single

model. In cases where the context information is unknown, a context is defined as a

group of similar signatures.

The mixture of experts (ME) model introduced by Jacobs and Jordan et al. [3, 4] is

suitable for such problems as it solves non-linear problems by a probabilistic division of

the input space. In the ME model, a gate makes soft partitions of the input space and

defines those regions where the individual expert opinions are trustworthy. A simple

example to demonstrate the division of the input space is shown in Fig. 1-1, where the

gate simplifies a nonlinear classification problem into two linear classification problems,

and the experts learn the simple parametrized surfaces in these regions. While the ME

has been used to solve both regression and classification problems, the focus of this

study is the classification version. In the rest of this dissertation, ME will refer to the

original model in [3, 4].

Figure 1-1. Simplified classification example for ME. The gate divides the region in two
with a soft decision, then the experts learn the simple surfaces to separate
the two classes. Modified with permission [5].

Prior to embarking on research on variations of the ME model, experiments were

conducted with the original ME model for landmine detection. The experts of the ME

model give soft decision boundaries for different types of mines (HMAT, LMAT, etc.),

and learn specialized models for each type. The ME model significantly increased the
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classification rates while providing insightful parameters that can be understood by a

system operator.

For complicated input examples, however, ME is prone to over-training due to

the expectation-maximization (EM) training, especially if the number of experts are

increased. To regularize ME, the variational mixture of experts (VME), was developed

and used by several researchers [6–10] for regression problems. Waterhouse [9]

discussed how to adjust VME to classification, but the steps to train the model were

not made clear since the equations were applicable to vector-valued parameters as

opposed to matrices for each expert. Also, the previous algorithms used the number

of iterations as a stopping condition, which may lead to premature termination of the

algorithm or to unnecessary training.

In addition, the ME model is not suitable for time series data, and the several

extensions in the literature [11–16] concern regression and use a one-step-ahead or

multi-step-ahead prediction. In multi-step prediction the last d values of the time-series

data are used as features in a neural network, but such algorithms cannot handle data

with varying length and the use of multilayer network type approaches prevent them

from completely describing the temporal properties of time-series data.

1.1 Original Contributions

A variational mixture of experts model for multi-class classification (VMEC) is

developed, and (1) a complete learning algorithm for VMEC is given, (2) a variational

lower bound is derived for VMEC, and (3) the efficacy of the approach is presented on

synthetic data as well as on landmine data to compare to the ME trained with EM. The

advantages of the VMEC model can be listed as follows:

• The VMEC model regularizes the model parameters and resists over-fitting,

• Gives distributions of the parameters instead of point estimates,

• The lower bound provides a measure of correctness and can be used as a
stopping criterion.
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A novel mixture of hidden Markov model experts (MHMME) is developed that can

both decompose time-series data into multiple contexts, and learn expert classifiers

for each context. In MHMME, a gate of hidden Markov models cooperate with a set of

hidden Markov model experts that provide multi-class classification. MHMME shares the

following advantages of the ME model:

• MHMME model provides a divide and conquer approach, is probabilistic, and has
soft boundaries – all of which make it very suitable for context learning.

• Unlike the traditional mixture models where the mixture coefficient is a scalar, in
the MHMME model, the mixture coefficient (i.e. the gate) depends on the input,
which supports the context learning.

• The learning of the contexts and the classifiers is accomplished simultaneously in
one model. MHMME is suitable for multi–class classification.

In addition, MHMME has the following three advantages that set it apart from the other

models:

• MHMME model is suitable for time-series data and sequential data of varying
lengths due to the use of the hidden Markov models.

• There is no hard clustering of time-series data so sequences can freely move
between contexts and classifiers during training.

• Experiments on synthetic and real data show that MHMME can perform better than
ME and HMMs, and can do well in comparison to state-of-the-art models.

The update equations that lead to the simultaneous training of the experts and

the gate are given in Chapter 6. Throughout this study, the following words, temporal,

sequential, and time-series data, will be used interchangeably as we are not only

interested in time-series data, but with any data that carry sequential information.
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CHAPTER 2
DESCRIPTION OF DATASETS

2.1 Landmine Dataset

At present, there are between 60, 000, 000 to 100, 000, 000 active buried landmines

around world [17], and the detection of these landmines is a hard problem because of

the various sizes and different types of mines, as well as the changes in their signatures

with changes in temperature, humidity, and soil conditions. To address this problem we

consider a dataset consisting of mine and non-mine object data collected using robotic

systems with ground penetrating radar (GPR) and wide-band electromagnetic induction

(WEMI) sensors.

Landmines are typically categorized into four groups according to their metallic

content and according to their intended targets. These categories are high metal

anti-tank (HMAT), high metal anti-personnel (HMAP), low metal anti-tank (LMAT), and

low metal anti-personnel (LMAP). To create a controlled environment for algorithm

development, clutter and mine objects were placed into grid cells in two temperate sites,

and data was collected using the robotic systems. The properties of these temperate

sites are given in Table 2-1 and Table 2-2. Table 2-1 gives the number of objects in

each site. It can be observed that the first site has more clutter objects and fewer mine

objects. The second site contains more mine objects and more mine types. In Table 2-2,

the percentage of landmine and clutter objects is given.

Table 2-1. Landmine data collection from two temperate sites
Data/Site Temperate Site 1 Temperate Site 2
Total number of data 224 220
Number of mine objects 44 112
Number of clutter objects 148 68
Number of blank grid cells 32 40
Number of mine types 12 26
Grid area 1.5m x 1.5m 1m x 1m

17



Table 2-2. Proportion of landmine and clutter objects
Notation Meaning Proportion
HMAP High metal anti-personnel mine 6.7
LMAP Low metal anti-personnel mine 14.8
HMAT High metal anti-tank mine 2.4
LMAT Low metal anti-tank mine 11
HMC High metal clutter 20.2
MMC Medium metal clutter 6.3
LMC Low metal clutter 6.3
NMC Non-metallic clutter or blank cell 32.1

To detect these landmines, robotic systems with GPR and WEMI sensors have

been developed as shown in Fig. 2-1. The WEMI sensors are good at finding the mines

with metallic content, whereas the GPR sensors are good at finding the plastic mines. A

GPR sensor’s operating frequency is between 200 MHz and 7 GHz, and it collects data

with 2 cm intervals in 24 channels. The WEMI sensor, also called the metal detector,

collects complex responses in 21 frequencies between 330Hz and 90, 030Hz spaced

at constant intervals in log space, at 1 cm intervals in three channels. This results in a

21 × 3 × 150 complex data matrix for each grid cell. The metal detector is completely

described in [18, 19].

Signatures of data collected by GPR and WEMI are shown in Fig. 2-2. In general,

landmines show hyperbolic patterns in the GPR data [20], and show smoother patterns

in WEMI data when compared to non-metallic clutter. Anti-personnel mines are

generally placed close to the ground surface, show some faint metallic signature,

and display some GPR that can often be confused with surface clutter. Anti-tank mines

are found at deeper levels, are bigger in size, so they yield better GPR signatures, but

as they are found at greater depths, their EMI signals tend to be faint, especially for the

ones with low metal content. These properties are summarized in Table 2-3.

In the data collection, adjoining lanes were divided into grid cells and the object was

assumed to be at the center of the cell as shown in Fig. 2-3. The data were collected
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Figure 2-1. The robotic systems for landmine detection. The vehicle on the left has a
GPR sensor, while the cart on the right has a metal detector sensor. In the
3-D data collected from the GPR, the path of the moving vehicle is denoted
as the down-track, and the channels in the GPR sensor are denoted as the
cross-track.

Table 2-3. Properties of landmines
Low Metal (LM) High Metal (HM)

Anti-personnel (AP) Shallow Shallow
Some GPR Some GPR
Faint metal Good metal

Anti-tank (AT) Deep Deep
Good GPR Good GPR
Faint metal Good metal

in two opposite directions over the same set of grid locations. The feature extraction

algorithms were designed to give a score from the center of the grid cell.

In this study, the angle prototype matching (APM) [21] and gradient angle model

(GRANMA) based K-nearest neighborhood (K-NN) [22] feature extraction algorithms

were used for EMI data; and linear prediction processing (LPP) [20], spectral feature

extraction (SF) [23] and edge histogram descriptor (EHD) [24, 25] methods were used

for GPR data.
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A LMAP object’s GPR data on the left, EMI data on the right

B LMAT object’s GPR data on the left, EMI data on the right

Figure 2-2. Signatures collected from the GPR and WEMI sensors for an LMAP and an
LMAT. In the GPR data, the x-axis shows the down-track direction, and the
y-axis shows the depth. In the WEMI data, for both the real (top) and
imaginary response (bottom), the x-axis shows the down-track direction,
y-axis shows the energy, and z-axis shows the frequency.

APM and GRANMA feature extractors use argand diagrams. An argand diagram

is a plot of the in-phase component against the quadrature-phase component; and
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Figure 2-3. The lanes are divided into grid cells of width 1m and 1.5m. Each object is
placed at the center of a grid cell.

the angles between the points in an argand diagram have been shown to provide

discriminative features for different types of landmines [22]. Examples of argand

diagrams are shown in Fig. 2-4, for two different types of mines in Fig. 2-4(A-B), for

a metallic object in Fig. 2-4(C), and a for nonmetallic objects in Fig. 2-4(D). The APM

method finds the angle sequences and uses a point-wise median (median among

candidates at a given frequency) as the prototype and computes the Euclidean distance

as a goodness of fit measure. The GRANMA method uses a parametric model of the

WEMI data, whose parameters are used for classification in a K-NN framework.

The first of the GPR features, LPP, is the maximum energy value of the background

removed data around an alarm location declared by a pre-screener. The background

in the GPR is removed using a dynamic linear predictor, where the current background

vector sample is approximated by a linear combination of past background vector

samples. The linear prediction coefficients are obtained by minimizing the mean-square

prediction error, and the LPP output is the difference between the current GPR vector

sample and its predicted value generated from the linear prediction model.

The second GPR feature extractor is the spectral algorithm. The spectral feature is

created by estimating the energy density spectrum (EDS) of an alarm at the declaration

position and matching the estimated EDS with a template that is obtained from a
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Figure 2-4. Argand diagrams for mine and clutter objects. An argand diagram is the plot
of the real EMI response I (w) vs. the imaginary EMI response Q(w).
Metallic objects show smoother and distinct shapes such as the LMAT mine
in (A), LMAP mine in (B), metallic clutter object in (C). Nonmetallic objects
have noisy argand plots such as the nonmetallic clutter object in (D).

landmine target. The LPP and spectral features were fused by the direct sum of the two

(after proper scaling in LPP) divided by the square root of spectral compactness. This is

called the SpectralLPP feature.

The third GPR feature, EHD, is a translation invariant feature based on the local

edge distribution of the 3D GPR signatures [24, 25]. With EHD, a 3D signature is divided

into windows. In each window, local edges are characterized as vertical, horizontal,
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diagonal, antidiagonal edges and nonedges. Then the local edge distribution for each

window is represented by a histogram. Finally, each object is given a confidence value

by comparing it to a number of prototypes using a possibilistic K-NN rule.

2.2 Chicken Pieces Dataset for 2D Shape Recognition

The chicken pieces database [26] consists of 446 binary images of chicken pieces

from five classes, a sample of which is displayed in Fig. 2-5. The number of samples in

each class is given in Table 2-4. This dataset is publicly available at http://algoval.

essex.ac.uk/data/sequence/chicken/. Its curvature features were made available by

Bicego et al., and fully exlained in [27]. Briefly, the curvature features were obtained as

follows: the contours of the binary images were found by a Canny edge detector, and

approximated by line segments. The initial point was set to the rightmost point lying

on the horizontal line passing through the object centroid. Then the curvature value at

each point was computed as the angle between two consecutive segments at that point

and recorded in a counterclockwise manner as demonstrated in Fig. 2-6. The resulting

sequences have different lengths as summarized in Table 2-5.

Table 2-4. Distribution of samples in the chicken pieces dataset
Wing Back Drumstick Thigh and Back Breast Total
117 76 96 61 96 446

Table 2-5. Lengths of the sequences in the chicken pieces dataset
Min. length Max. length Mean length Median length

18 104 54 51
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Figure 2-5. A sample from the chicken pieces database. The rows represent the wing,
back, drumstick, thigh and back, and breast classes, respectively.

Figure 2-6. Curvature features. Contours of binary images were found by a Canny edge
detector, and approximated by line segments. Curvature value at each point
was computed as the angle between two consecutive segments, and was
recorded in a counterclockwise manner. The initial point is the rightmost
point lying on the horizontal line passing through the object centroid.
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CHAPTER 3
MIXTURE OF EXPERTS (ME)

The original mixture of experts (ME) model introduced by Jacobs et al. [3] can be

viewed as a tree structured architecture that is based on the principle of divide and

conquer, and has three main components: several experts that are either regression

functions or classifiers; a gate that makes soft partitions of the input space and defines

the regions where the expert opinions are trustworthy; and a probabilistic model to

combine the gate and the experts. The model is a weighted sum of the experts, where

the weights are the input dependent gates. In this simplified form, the original ME model

has three important properties, (i) it allows for the individual experts to specialize in

smaller parts of a bigger problem, (ii) it uses soft partitions of the data, and (iii) it allows

the splits to be formed along hyperplanes at arbitrary orientations in the input space

[28]. These properties allow to represent non-stationary or piecewise continuous data

in complex regression processes, and to identify the non-linearities in classification

problems. Therefore, to understand the systems that produce such non-stationary or

piecewise continuous data, ME has been revisited and revived over the years in many

publications. In these studies, the key elements have been the three components of the

original ME – the gate, the experts and a model to combine the gate and the experts.

The linear gate and the experts of the original ME model have been improved with more

complicated regression or classification functions, the learning algorithm has been

changed, and the mixture model has been modified for density estimation and for time

series data representation.

In the past twenty years, there have been solid statistical and experimental analyses

on ME, and a considerable number of studies have been published in all areas of

regression, classification and fusion. The ME models have been found useful in

conjunction with many of the current classification or regression algorithms because
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of their modular and flexible structure. In the late 2000’s, several ME studies were

published, including [14, 16, 29–54].

To see the benefit that ME models have provided, we can look at a 2008 survey

that identified the top 10 most influential algorithms in the data mining area. It cited

C4.5, k-Means, support vector machines (SVM), Apriori, expectation-maximization (EM),

PageRank, AdaBoost, k-nearest neighborhood (kNN), naive Bayes, and classification

and regression trees (CART) [55]. ME is closely related to most of these algorithms, and

has been compared to, or combined with most of them to improve their performance.

Specifically, MEs have often been trained with EM and have been initialized using

k-Means [37, 56]. It has been found that decision trees have the potential advantage

of computational scalability, handling data of mixed types, handling missing values,

and dealing with irrelevant inputs [57]. However, decision trees carry the limitations of

low prediction accuracy and high variance [58]. ME can be regarded as a statistical

approach to decision tree modeling where the decisions are treated as hidden

multinomial random variables. Therefore, ME carries the advantages of decision

trees, but improves on them with its soft boundaries, lower variance, and its probabilistic

framework to allow for inference procedures, measures of uncertainty, and Bayesian

approaches [59]. On the other hand, decision trees have been combined in ensembles,

forming random forests, to increase the performance of a single ensemble and increase

prediction accuracy while keeping other decision tree advantages [60]. Similarly, ME has

been combined with boosting and, with a gating function that is a function of confidence,

ME has been shown to provide an effective dynamic combination for the outputs of the

experts [61].

ME is flexible enough to be combined with a variety of different models. It has been

combined with SVM [35, 36, 54] to partition the input space and to allocate different

kernel functions for different input regions. Recently, ME has been combined with

Gaussian processes (GP) to make them accommodate nonstationary covariance and
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noise. A single GP has a fixed covariance matrix, and its solution typically requires

the inversion of a large matrix. With the mixture of GP experts model [29, 30], the

computational complexity of inverting a large matrix can be replaced with several

inversions of smaller matrices, providing the ability to solve larger scale datasets. ME

has also been used to make a hidden Markov model (HMM) with time-varying transition

probabilities that are conditioned on the input [16, 41].

ME has been regarded as a mixture model for estimating conditional probability

distributions, and with this interpretation, MEs statistical properties have been investigated

during 1994 – 2006. The convergence properties [4], the bias and variance analysis

[62], upper bounds on the approximation error [63], rate of approximation to the

true mean in regression [64], bounds on the Vapnik-Chervonenkis dimension of

ME [65], regularity conditions for consistency [66], identifiability of ME [67], function

approximation properties [68], asymptotic normality conditions [69], consistency

properties [70, 71] have been analyzed.

These statistical properties have led to the development of various Bayesian training

methods between 1996 – 2010, and it has been possible to train ME with variational

methods and Markov chain Monte Carlo (MCMC). The Bayesian training methods have

introduced prior knowledge into the training, helped avoid over-training, and opened the

search for the best model (the number of experts and the depth of the tree) during 1994

– 2007. In the meantime, the model has been used in a very wide range of applications

from finance to biology.

3.1 ME Classification Model

In the ME model, a set of expert networks and a gating network cooperate with

each other to solve a non-linear supervised learning problem by dividing the input space

into a nested set of regions. The gating network makes a soft split of the whole input

space, and the experts learn the simple parametrized surfaces in these partitions of the

regions. The parameters of these surfaces in both the gate and the expert networks can
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be learned using the EM algorithm. A simple example to demonstrate the division of the

input space is shown in Fig. 3-1. In Fig. 3-1(A) the blue points from the first class and

the red points from the second class are not linearly separable. However, once the data

is partitioned into two by the gate shown in Fig. 3-1(B), the data on either side of the

gate is linearly separable, and can be classified by linear experts as shown in Fig. 3-1(C)

and Fig. 3-1(D). The parameters of the gate and the experts have been plotted as lines.

The final decision has been explicitly shown in Fig. 3-1(E). The decisions of the gate and

the experts are probabilistic, so these regions are actually soft partitions, and the final

decision is made by taking the maximum of the probabilistic outputs.
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Figure 3-1. Classification results on a simple example. The blue and the red points in (A)
belong to class 1 and class 2, respectively. The gate divides the region into
two in (B), such that, to the left of the gating line, the first expert is
responsible as shown in (C), and to the right of the gating line, the second
expert is responsible as shown in (D). In (E), classification results are shown
as areas, where the black region corresponds to class 1 (blue points) and
the white region corresponds to class 2 (red points).
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Let D = {X ,Y } denote the data where X = {x(n)}Nn=1 is the input, Y = {y(n)}Nn=1 is

the target, and N is the number of training points. Also, let Θ = {Θg,Θe} denote the set

of all parameters where Θg is set of the gate parameters and Θe is the set of the expert

parameters. Unless necessary, we will denote an input vector x(n) with x, and a target

vector y(n) with y from now on. A superscript (n) will be used to indicate that a variable

depends on an input x(n).

The derivation of a training algorithm for the ME model makes use of the assumption

that P(i |j , x,Θ) = 0 if i ̸= j where i and j denote any two experts. With this assumption,

the total probability theorem applies [12]. Furthermore, the probability the gate Θg given

Θg is independent of the parameters of the experts Θe . Therefore, the total probability of

observing y can be written in terms of the experts:

P(y|x,Θ) =
I∑
i=1

P(y, i |x,Θ)

=

I∑
i=1

P(i |x, Θg)P(y|i , x,Θe)

=

I∑
i=1

gi(x,Θg)P(y|i , x,Θe) (3–1)

where I is the number of experts, the function gi(x,Θg) ≡ P(i |x,Θg) representing the

probability of the i th expert given x is the gate, and P(y|i , x,Θe) is the probability of the

i th expert generating y given x. The latter will be denoted by Pi(y) from now on. The ME

training algorithm maximizes the log-likelihood of the probability in Eq. 3–1 to learn the

parameters of the experts and the gate.

The gate is the scalar defined by the softmax function:

gi(x, v) =
eβi (x,v)∑I
j=1 e

βj (x,v)
(3–2)
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where βi(x, v) are linear functions of the gate parameter v given by βi(x, v) = vTi [x, 1] in

the original ME. The softmax function is a smooth version of the winner-take-all model.

For a K -class classification, there are K parameter sets {{wik}Ii=1}Kk=1 to be learned

in each expert, corresponding to the parameters of each class, as shown in Fig. 3-2.

The desired output y(n) is of length K and y (n)k = 1 if x(n) belongs to class k and 0

otherwise. For I the number of experts and k : 1...K the class index, the experts follow

the multinomial probability model:

Pi(y) =
∏
k

ŷ ykik . (3–3)

where ŷik are the expert outputs per class computed by softmax functions:

ŷ
(n)
ik =

exp(wTik [x
(n), 1])∑K

r=1 exp(w
T
ir [x

(n), 1])
, (3–4)

To make a single prediction, the outputs are computed per class:

ŷ
(n)
k =

∑
i

gi(x
(n))ŷ

(n)
ik ,

and for practical purposes, the input x(n) is classified as belonging to the class k that

gives the maximum ŷ (n)k , k : 1...K . It can also be the case that the ME model may

serve as a component in a larger model and that the probabilities can be used in a

higher level reasoning system.

In training the ME, indicator variables Z = {{z (n)i }Nn=1}Ii=1 are introduced such that

z
(n)
i =

 1 if x(n) ∈ Ri ,

0 otherwise

where Ri is the region specified by expert i . With the indicator variables, Eq. 3–1 can be

turned into the complete data distribution
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Figure 3-2. ME architecture for classification

P(Y ,Z |w, v) =
∏
n

∏
i

(
g
(n)
i Pi(y

(n))
)z (n)i
. (3–5)

The complete log likelihood can be written as:

l(Θ;D;Z) =

N∑
n=1

I∑
i=1

z
(n)
i {log g(n)i + logPi(y

(n))} , (3–6)

which is a function of the missing random variables zi . Therefore, the EM algorithm

is employed to average out zi and maximize the expected complete data likelihood

EZ(logP(D,Z |Θ)). The expectation of the likelihood in Eq. 3–6 results in:

Q(Θ,Θ(p)) =

N∑
n=1

I∑
i=1

h
(n)
i {log g(n)i + logPi(y

(n))}

=

I∑
i=1

Qgi +Q
e
i , (3–7)

where p is the iteration index,
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Qgi =
∑
n

h
(n)
i log g

(n)
i (3–8)

Qei =
∑
n

h
(n)
i logPi(y

(n)) (3–9)

and

h
(n)
i = E [z

(n)
i |D] = g

(n)
i Pi(y

(n))∑
j g
(n)
j Pj(y

(n))
. (3–10)

The parameter Θ is estimated by the iterations through the E and M steps given by:

1. E-step: Compute h(n)i , the expectation of the indicator variables.

2. M-step: Find a new estimate for the parameters, such that

v
(p+1)
i = argmax

vi

Qgi ,

and
θ(p+1)i = argmax

θi

Qei .

There are three important points regarding the training. Firstly, Eq. 3–8 describes

the cross-entropy between gi and hi . In the M step, hi is held constant, so gi learns to

approximate hi . Remembering that 0 ≤ hi ≤ 1 and 0 ≤ gi ≤ 1, the maximum Qgi

is reached if both gi and hi are 1 and the others (gj , hj , i ̸= j) are zero. This is in line

with the initial assumption from Eq. 3–1 that each pattern belongs to one and only one

expert. If the experts are actually sharing a pattern, they pay an entropy price for it.

Because of this property, ME algorithm is also referred to as competitive learning among

the experts, as the experts are rewarded or penalized for sharing the data. A more

detailed explanation about the effect of entropy on the training is provided in [12, 28] .

The second important point is that, by observing Eq. 3–8 and Eq. 3–9, the gate

and the expert parameters are estimated separately owing to the use of the hidden

variables. This decoupling gives a modular structure to the ME training, and has led to
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the development of the hierarchical mixtures of experts (HME) and to the use of other

modular networks at the experts and the gates. The probability model for HME [4, 28] is:

P(y|x,Θ) =
I∑
i=1

gi(x,Θgi )

I∑
j=1

gj |i(x,Θgj/i )Pij(y,Θe) , (3–11)

where gi is the output of the gate in the top layer, gj |i is the output of the j th gate

connected to the i th gate of the top layer, and Θgi and Θgj/i are their parameters,

respectively.

The third important point is that, maxvi Q
g
i can not be solved analytically because

of the softmax function. Therefore, one can use the iterative recursive least square

(IRLS) technique for linear gate and expert models [28], the extended IRLS algorithm

for non-linear gate and experts [4], or use the generalized EM (GEM) algorithm that

increases the Q function but does not necessarily fully maximize the likelihood [72].

3.2 Advances in ME for Classification

The ME model was designed mainly for function approximation rather than

classification, however, it has a significant appeal for multi-class classification due to

the idea of training the gating network together with the individual classifiers through

one protocol. In fact, more recently, the ME model has been getting attention as a

means of finding sub-clusters within the data, and learning experts for each of these

sub-clusters. In doing so, the ME model can benefit from the existence of common

characteristics among data of different classes. This is an advantage compared to the

other classifiers that do not consider the other classes when finding the class conditional

density estimates from the data of each class.

Waterhouse and Robinson provided a nice overview on the parameter initialization,

learning rates and stability issues in [73] for multi-class classification. Since then, there

have been reports in the literature [74–76] that networks trained by the IRLS algorithm

perform poorly in multi-class classification. Although these arguments have merit, Ng
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and McLachlan [77] claimed that if the step-size parameters are small enough, then the

log-likelihood is monotonic increasing and the IRLS is stable.

The IRLS algorithm makes a batch update, and updates all the parameter vectors

of an expert {wik}Kk=1 at once, and implicitly assumes that these parameters are

independent. Chen et al. [76] pointed out that IRLS updates result in an incomplete

Hessian matrix, in which the off-diagonal elements are non-zero, implying the dependence

of the parameters. In fact, in multi-class classification, each parameter vector in an

expert relate to each other through the softmax function in Eq. 3–4, and therefore,

these parameter vectors can not be updated independently. Chen et al. noted that such

updates result in unstable log-likelihoods, so they suggested using the exact Hessian

matrix in the inner loop of the EM algorithm. However, the use of the exact Hessian

matrix results in expensive computations, therefore, they proposed using the generalized

Bernoulli density in the experts for multi-class classification as an approximation to the

multinomial density. With this approximation, all of the off-diagonal block matrices in

the Hessian matrix are zero matrices, and the parameter vectors are separable. This

approximation resulted in simplified Newton-Raphson updates and required less time;

however, the error rates increased due to the fact that it was merely an approximation.

Following this study, Ng and McLachlan [77] ran several experiments to show

that the convergence of the IRLS algorithm is stable if the learning rate is kept small

enough, and the log-likelihood is monotonic increasing even though the assumption of

independence is incorrect. However, they also suggested using the expectation-conditional

maximization (ECM) algorithm with which the parameter vectors can be estimated

separately. The ECM algorithm basically suggests to learn the parameter vectors one

by one, and to use the updated parameters while learning the next parameter vector.

In doing so, the maximizations are over smaller dimensional parameter space and are

simpler than a full maximization, and the convergence property of the EM algorithm

is kept (at least on the subsets). In 2007, Ng and McLachlan [78] presented an ME
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network for binary classification, in which, the interdependency between the hierarchical

data was taken into account by incorporating a random effects term into the experts

and the gates. The random effects term in an expert provided information as to whether

there is a significant difference in local outputs from each expert network, and it was

shown to increase the classification rates.

Recently, ME has found interest in classification studies that can benefit from

the existence of sub-clusters within the data. In a study by Titsias and Likas [79], the

ME classification formulation was written more explicitly, such that, the probability of

selecting an expert and the probability of selecting the sub-cluster of a class within an

expert were written separately as:

l(Θ;D;Z) =

K∑
k=1

∑
x∈Xk

I∑
i=1

zi(x){log giP(Ck |i)p(x|Ck , i , θki)} , (3–12)

where p(x|Ck , i , θki) is the Gaussian model of a sub-cluster corresponding to class Ck ,

and θki are the corresponding parameters.

In a 2008 study by Xing and Hu [37], unsupervised clustering was used to initialize

the ME model. In the first stage, a fuzzy C-means (FCM)-like algorithm was used for

partitioning all the unlabeled data into several clusters, and a small fraction of these

samples from the cluster centers were chosen as training data. In the second stage,

several parallel two-class MEs were trained with the corresponding two-class training

data sets. Finally, given a test datum, its class label was determined as the largest vote

of the MEs.

In using clustering approaches for the initialization of ME, a good cluster can be

a good initialization to the gate and speed-up the training significantly. On the other

hand, a strong clustering may lead to an unnecessary number of experts, or lead to the

over-training of the classifier. It might also force the ME to a local optimum. Therefore,

it would be interesting to see the effect of initialization with clustering on the ME model.

Another work that would be interesting would be to see the performance of ME for a
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K -class problem where K > 2 and compare it to the
(
K
2

)
comparisons of 2-class MEs

and the decision from their popular vote.

3.3 Modifications to ME to Handle Sequential Data

The original formulation of ME was for static data, and was based on the statistical

independence assumption of the training pairs. Hence, it did not have a formulation

to handle causal dependencies. To overcome this problem, several studies extended

ME for time-series data. In the past decade, ME has been applied to regression of

time-series data in a variety of applications. It was found to be a good fit in such

applications where the time-series data is non-stationary, meaning the time series

switch their dynamics in different regions, and it is difficult for a single model to capture

the entire dynamics of the data. For example, Weigend et al. [12] used ME to predict

the daily electricity demand of France, which switches among regimes, depending

on the weather, seasons, holidays, and workdays, establishing daily, seasonally and

yearly patterns. Similarly, Lu [39] used ME for climate prediction because the time

series dynamics switch between different regions. For such data, ME showed success

in finding both the decomposition and the piecewise solution in parallel. In most of

the following papers, the main idea is that the gating divides the data into contexts

(regimes), and the experts learn local models for each context.

For time-series data, Zeevi et al. [80] and Wong et al. [81] generalized the

autoregressive models for time series data by combining them with an ME structure. In

the speech-processing community, Chen et al. [11, 74, 82] used HME for text-dependent

speaker identification. In [74] the features were calculated from a window of utterances

to introduce some temporal information to the solution. In [11] a modified HME structure

was introduced. In the modified HME, a new gating network was added to make use

of the transitional spectral information while the original HME architecture dealt with

instantaneous information. The new gating network, called the S-gating network, was
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placed at the top of the tree and given a paired observation (X , y) with X = x1, ..., xT ;

the probabilistic model was modified as:

P(y |X ,Θ) =
T∑
t=1

λX (xt , Φ)
∑
i

gi(xt , vi)
∑
j

gj/i(xt , vij)P(y |xt , θij), (3–13)

with

λX (xt) =
P(xt |Φ)∑T
s=1 P(xs |Φ)

, (3–14)

where P(xt |Φ) is a Gaussian distribution. Then, for a speaker identification system of

population K , they selected the unknown speaker k∗ that gives the highest regression

probability out of the K models. Using this model, Chen et al. modified the EM-update

equations and solved for the parameters of the top-most Gaussian gate analytically,

whereas the rest of the parameters for the expert and gating networks were found

iteratively. With this work, HME gained the capability to handle sequences of observations,

but the experts and gating networks (except the extra gate) were still linear models.

For non-stationary data, Cacciatore and Nowlan [83] suggested using recurrence

in the gating net, such that, the input to the gating network was the ratio of the outputs

at the two preceding time steps. Weigend et al. [12] developed gated ME to handle

time-series data that switches regimes. A gating network in the form of a multilayer

perceptron combines the outputs of the neural network experts. Hence, while the

gate discovers the hidden regimes, the experts learn to predict the next observed

value. This gated ME approach was extended by Coelho et al. [14], where training was

accomplished using genetic algorithms instead of gradient descent. A similar idea to

detect switching regimes was also visited by Liehr et al. [84] where the gating was a

transition matrix, and the experts were Gaussian functions.

Most of these ME models that handle time-series data on regression use a

one-step-ahead or multi-step-ahead prediction, in which the last d values of the
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time-series data are used as a feature of d-dimensions in a neural network. The

benefit of using a sliding window type technique is that a sequential supervised learning

problem can be converted into a classical supervised learning problem. However, these

models cannot handle data with varying length, and the use of multilayer network type

approaches prevent them from completely describing the temporal properties of a

time-series data. Such problems were discussed by Dietterich in [85], for predicting the

pronunciation of English words from spelling. As an example, Dietterich noted that the

only difference between the words “thought” and “though” is the final “t”, yet it influences

the initial pronunciation of the initial “th”. Hence, a small window might cause to miss the

longer-range interactions, or a large window might consider features that are not really

relevant. Therefore, it is of interest to develop models that can fully use the information

from time-series or sequential data by using models such as the hidden Markov models,

which we show in Chapter 6.

In a number of studies by Wang et al. [16] and by Li [41], the experts are the states

of a hidden Markov model (HMM), and the goal is to estimate the HMM parameters.

The architecture introduced by Wang et al. [16] was named the time-line hidden Markov

experts, and it segments the trajectory into several states and learns each of them using

a local expert. The learning of the time-line HMM is to estimate the parameters of the

HMM for observing the training samples. In time-line hidden Markov experts, transition

probabilities are also time-varying and designed to be conditioned on the input. The

local experts can be some sort of a regression model depending on the particular

modeling case. The time-line HMM combines the experts using the state probabilities

of the HMM, which are determined by the previous state of the HMM and the state

transition probabilities simulated by the state transition network.

Similarly, the probability density estimation of an HMM has been mimicked using

ME systems in [15, 86–89]. Zhao et al. [86] mimicked an HMM by using an HME system

in which, hierarchically organized, relatively small neural networks were trained to
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perform the probability density estimation. Meila et al. [87] implemented the transition

matrix with a bank of gating networks, and the observation probability densities were

modified to be centered around the experts.

Bengio et al. [15] extended the ME model in a structure named an input-output

HMM (IOHMM) with a linear feedback loop and two sets of experts. The first set of

experts compute the output given the current state and input, whereas the second

set of experts make use of the feedback loop and compute the next state distribution

given the input and the previous state (i.e. the state transition probabilities). The

learning is carried out with an EM algorithm, where the update equations are similar

to the forward backward recursions of HMM. A nice feature of this study is that the

transition probabilities are time-varying and depend on the input to the system. However,

the limitation of both the gated ME and the IOHMM is that the experts are multilayer

perceptrons, which may not always be appropriate for time-series modeling. Fritsch et

al. [88] developed a neural network based system for estimating emission probabilities

in an HMM system such that the neural network has as many output nodes as there are

HMM states, and the neural network produces estimates of posterior state probabilities.

The outputs of these neural networks are then combined with HME.

To remove the independent and identically distributed (iid.) assumption of the

data that was necessary in the original HME model, and to find a model appropriate

for time-series data, Jordan et al. [90] described a decision tree with Markov temporal

structure named as a hidden Markov decision tree (HMDT), in which each decision in

the decision tree is dependent on the decision taken at the node at the previous step.

The result was an HMM in which the state at each moment in time was factorized,

and the factors are coupled to form a decision tree. This model is an effort to combine

adaptive graphical probabilistic models such as the HMM, HME, IOHMM and factorial

HMM [91] in a variational study.
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The benefits of these approaches of modeling an HMM with HME is that, the

restrictions on HMM because of the Markov property can be relaxed, or one can replace

the observation distributions with more complex distributions. However, why such

approaches did not become as famous as HMMs might be due to the need to learn

more parameters and to find elegant training algorithms. On the other hand, in none of

these studies has HME been used for the multi-class classification of sequential data.

Therefore, in Chapter 6, we develop the mixture of HMM experts model, provide its

derivation and the training algorithm.

3.4 Comparison to Popular Algorithms

A comparison of ME with some of the popular models was given at the beginning

of the chapter. In this section, we extend these comparisons to more models. HME can

be regarded as a statistical approach to decision tree modeling where the decisions

are treated as hidden multinomial random variables. Therefore, in comparison to the

decision trees such as CART [92], HME uses soft boundaries, and allows us to develop

inference procedures, measures of uncertainty, and Bayesian approaches. Also, it was

discussed by Haykin [59] that an HME can recover from a poor decision somewhere

further up the tree, whereas a standard decision tree suffers from a greediness problem,

and gets stuck once a decision is made.

HME bears a resemblance to the boosting algorithm [93, 94] in that the weak

classifiers are combined to create a single strong classifier. ME finds the subsets

of patterns that naturally exist within the data, and learns these easier subsets to

solve the bigger problem. In boosting on the other hand, each classifier becomes

an expert on difficult patterns on which other classifiers make an error. Hence, the

mixture coefficient in boosting depends on the classification error and provides a linear

combination, whereas the mixture coefficient (the gate) in the HME depends on the

input and makes probabilistic combination of experts. This difference in mixing makes

the training of these two algorithms significantly different such that, in boosting, the
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classifiers are trained sequentially based on the data that was filtered by the previously

trained networks. Once the training data is specified, the boosting networks are

learned independently, and combined with a mixture coefficient that is learned from

the classification error. In HME, the experts compete with each other for the right to

learn particular patterns; hence, all the experts are updated at each iteration depending

on the gate’s selection. In an effort to incorporate boosting into ME, Waterhouse and

Cook [95] initialized a split of the training set learned from boosting to different experts.

In boosted ME, Avnimelech and Intrator [61] added the experts one by one, and trained

the new experts with the data on which the other experts were not confident. The gating

function in this case was a function of the confidence. One can think of these boosted

ME algorithms as a smart preprocessing the data. Another study on preprocessing was

published by Tang et al. [56] where self organizing maps (SOM) were used, in which,

as opposed to feeding all the data into the expert networks, only the local regions of the

input space found by SOM were assigned to the individual experts. Even though the

performance was reported to get better for the dataset in this study, hard clustering of

the data prior to ME training may restrict the performance of ME for other datasets.

Multivariate adaptive regression splines (MARS) model partitions the input space

into overlapping regions and fits a univariate spline to the training data in each region.

The same mixture coefficient argument also applies to the MARS model [96], which has

the equational form of a sum of weighted splines. In comparison to the latent variables

of HME, MARS defines the states by the proximity of the observed variables. On the

other hand, the Bayesian MARS is non-parametric, and requires sampling methods. It

was found that HME requires less memory as it is a parametric regression approach,

and the variational Bayesian inference for HME converges faster in time [51] .

In comparison to neural networks (NN), Nowlan and Hinton [97] showed that

when dealing with relatively small training sets, ME was better at generalizing than a

comparable single back-propagation network on a vowel recognition task. HME was
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shown to learn much faster than back-propagation for the same number of parameters

by Jordan and Jacobs [98]; however, it is questionable if this was a good comparison

since NNs were trained using a gradient-descent algorithm, whereas HME was trained

using second order methods. Additionally HME provide insightful and interpretable

results that the NNs do not provide. In terms of the degree of approximation bounds,

NNs and ME were found equivalent by Zeevi et al. [63].

Other models of ME include the max-min propagation neural network by Estevez

et al. [99] where the softmax function was replaced with max(min) units; and the model

by Lima et al. [35] where neural networks were used at the gate and support vector

machines at the experts.

3.5 Experimental Results on Landmine Data with the Original ME model

In this section, the results of the original ME model [3, 4] are presented on the

landmine data. For landmine detection, it is convenient to present the experimental

results using the receiver operating characteristics (ROC) curves. The ROC curve

specifies the probability of detection (PD) vs. the probability of false alarm (PFA), that

are defined as PD = Hit/( Hit + Miss) and PFA = FA/(FA + Reject), where the hit,

miss, false alarm (FA) and reject options are defined in Table 3-1.

Table 3-1. Naming conventions for receiver operating characteristics (ROC) curves
Algorithm / Actual Mine Non-mine
Mine Hit False alarm
Non-mine Miss Reject

The data from the experiments were collected in August 2007 from two geographically

separate test sites that also have different soil properties. Combined, both sites had a

total of 11 high metal anti-tank mines, 49 low metal anti-tank mines, 30 high metal

anti-personnel mines, 66 low metal anti-personnel mines as well as 90 high metallic

clutter objects, 28 medium metallic clutter objects, 28 low metallic clutter objects, 143

non-metallic clutter objects, and blanks. At each site, there were two collections; the first
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collection was performed in the northwest (NW) direction, and the second collection was

done in the southeast (SE) direction. The samples from both of these collections were

combined with a special requirement: if an object was included in the training, it was

included using the data from both collections (hence both NW and SE collections of the

same object data went into training), and neither was included in the testing. More on

this dataset was given in Sec. 2.1.

The experimental results were trained and tested with a 10-cross-fold validation; i.e.,

the dataset was divided into 10 subsets, 9 subsets were used for training, and 1 subset

was used for testing; and this validation was continued until all the subsets were tested.

Eight classes were trained corresponding to HMAT, HMAP, LMAT, and LMAP mines as

well as different kinds of clutter (HMC, LMC, NMC) and blank grid squares. An HME

architecture of depth two with eight experts was used. To obtain a final mine confidence

value, the confidences from the first four mine classes were summed up. To have a

final non-mine confidence value, the confidences from the four non-mine classes were

summed up, then converted to a mine-confidence by subtracting from 1.

The two WEMI metal detector classifiers, namely the angle prototype match and

angle model based K-NN gave 90/18 and 90/30 detection rates, respectively as shown

in Fig. 3-3. The two GPR classifiers, namely the spectralLPP and EHD, gave detection

rates of 90/50 and 90/51, respectively. When the HME algorithm was used, the detection

rates increased to 90/10, outperforming the single use of all the algorithms.

When the HME algorithm is run using just the EHD feature from GPR data and the

angle model feature from WEMI data, the regions picked by the HME for all classes is

displayed in Fig. 3-4. By finding the maximum confidence values of all these regions,

the dominant classes are displayed in Fig. 3-4(A). This result is inline with what an

expert person would expect for each class of objects. Hence instead of having just

a confidence value, such a graph gives the technician the opportunity to visually

understand where and why a confidence value was generated. In doing so, (s)he may

43



Figure 3-3. ROC curves on landmine data with 10-fold cross validation. The two WEMI
metal detector classifiers, namely the angle prototype match and angle
model based k-NN gave 90/18 and 90/30 detection rates, respectively. The
two GPR classifiers, namely the spectralLPP and EHD, gave detection rates
of 90/50 and 90/51, respectively. When the HME algorithm was used, the
detection rates increased to 90/10, outperforming any single use of all the
algorithms.

choose to accept a low confidence value object in the low metal anti-personnel region as

a mine, as those are the hardest mines to detect.

In summary, the ME and HME models combine simple expert models with mixing

weights, called gating functions, that depend on the input. Learning the ME (or HME)

means assigning the experts to various regions, and training each to best adapt to its

region. HMEs find the true segmentations when there is one, and they come up with

good segmentations when there are none. Thus, they were found to be very useful tools

by the landmine detection community as published in [45]. With the ME model, a general

decision can be made about into which category a landmine falls. Hence, some future
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Figure 3-4. The dominant and the soft regions of each class found from HME using EHD
and angle model features. The maximum of the soft regions is taken as the
dominant class, and displayed in the top-leftmost figure.

work that would be useful to the landmine detection community is to design and run

algorithms specifically trained to detect different kinds of mines.

There are two shortcomings to this approach. The first shortcoming is that the

EM training may lead to over-fitting. To overcome this problem, a variational ME

that regularizes ME and avoids over-fitting is introduced in Chapter 4. The second

shortcoming is that the ME works on static features only and cannot handle time-series

data. In the current landmine-detection setting, the object was assumed to be under

the radar, so static features were extracted from the region of interest. However, such a

setting does not make use of the surrounding information, and it ignores the time-series

data collection from moving radar. To overcome these issues, a mixture of HMM experts

algorithm is developed in Chapter 6.
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CHAPTER 4
VARIATIONAL MIXTURE OF EXPERTS FOR CLASSIFICATION (VMEC)

Variational methods, also called ensemble methods, variational Bayes, or variational

free energy minimization, is a technique for approximating a complicated posterior

probability distribution P(w|D) by a simpler ensemble Q(w, θ). The key to this approach

is that, as opposed to the traditional approaches where the parameter w is optimized to

find the mode of the distribution, variational methods define an approximating probability

distribution over the parameters, Q(w, θ), and optimize this distribution by varying

θ so that it approximates well the posterior distribution of the parameters P(w|D)

[100]. Hence, instead of point estimates for w representing the mode of a distribution,

variational methods produce an estimate for the whole distribution.

The mixture of experts (ME) training is accomplished through the expectation-maximization

(EM), however, EM training is sensitive to initialization and does not regularize the

parameters or use any prior information. Thus it is prone to over-training. To address

some of these problems, a variational mixture of experts (VME) was proposed in

[6–10] for regression and used in [32, 33] for 3D motion tracking. The similarities

of the classification and regression algorithms were discussed in [9], although a

clear framework was not given for classification. Also, the previous algorithms used

the number of iterations as a stopping condition, which may lead to the premature

termination of the algorithm or unnecessary training. In this study, a complete learning

algorithm for variational mixture of experts classification (VMEC) is introduced. To

state more explicitly how our approach builds on the work by Waterhouse [9], in a K

class classification, rather than a single weight vector, there are K weight vectors for

each expert. Thus, instead of a single hyper-parameter, our VMEC model assumes K

hyper-parameters for each expert. Similarly, instead of assuming a single distribution

per expert, there are K distributions per expert in VMEC. In addition, a distribution over

the hyper-parameters was not assumed in [9], but such an assumption is necessary to
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calculate the lower bound which provides an excellent stopping criterion that counters

over-training. With these assumptions, the joint distribution was modified to be a product

of the aforementioned distributions and the lower bound was derived using this modified

joint distribution.

Thus, in this chapter, (1) a complete learning algorithm for VMEC is given, (2) a

variational lower bound is derived for VMEC, and (3) the efficacy of the approach is

presented on synthetic data as well as on landmine data to compare to the ME trained

with EM. In the rest of the chapter, ME indicates the original mixture of experts model

trained with the EM algorithm.

4.1 VMEC Model

Following the same notation of the ME algorithm in Chapter 3, we let Θ =

{{vi ,wik}Ii=1}Kk=1 denote the gate and expert parameters, and place Gaussian priors

Φ = {{µi ,αik}Ii=1}Kk=1 on the parameters of the experts and the gates

P(w|α) =
∏
i ,k

P(wik |αik) =
∏
i ,k

N(wik |0,α−1
ik I),

P(v|µ) =
∏
i

P(vi |µi) =
∏
i

N(vi |0,µ−1
i I).

We also assume that the hyperparameters are Gamma distributed:

P(µ) =
∏
i

P(µi) =
∏
i

Gam(µi |c0, d0),

P(α) =
∏
i ,k

P(αik) =
∏
i ,k

Gam(αik |a0, b0).

The dependence of the hyperparameters and the parameters is illustrated in Fig. 4-1.

Using the distributions of the hyperparameters, the joint distribution can be written as:

P(Θ,Φ,Z ,D) = P(Y ,Z |w, v)P(w|α)P(α)P(v|µ)P(µ). (4–1)
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Figure 4-1. Directed acyclic graph representing the VMEC model showing the
dependence of the hyperparameters and the parameters.

In the variational approach, the goal is to find the distribution Q that best approximates

the posterior distribution, so the evidence P(D) is decomposed using

logP(D) = L(Q) + KL(Q||P), (4–2)

where L is the lower bound

L(Q) =

∫
Q(Θ,Φ,Z) log

P(Θ,Φ,Z ,D)

Q(Θ,Φ,Z)
dΘdΦdZ , (4–3)

and KL is the Kullback-Leibler divergence

KL(Q||P) = −
∫
Q(Θ,Φ,Z) log

P(Θ,Φ,Z |D)
Q(Θ,Φ,Z)

dΘdΦdZ . (4–4)

The Q distribution minimizes the KL-divergence; however, working on the

KL-divergence would be intractable, so we maximize the lower bound L [101]. We

assume the approximating distribution factorizes as:

Q(Θ,Φ,Z) = Q(Z)
∏
i

Q(vi)Q(µi)
∏
k

Q(wik)Q(αik). (4–5)

Plugging the joint distribution (Eq. 4–1) and the Q distribution (Eq. 4–5) into the lower

bound equation (Eq. 4–3), and taking the expectations with respect to all the other

variables, we obtain the Q distributions as:

48



Q∗(wik) = N(wik |wik ,Awik ), (4–6)

Q∗(αik) = Gam(αik |ap, bp), (4–7)

Q∗(vi) = N(vi |vi ,Avi ), (4–8)

Q∗(µi) = Gam(µi |cp, dp), (4–9)

Q∗(Z) =

N∏
n=1

I∏
i=1

h
(n)
i

z
(n)
i
. (4–10)

Here wik and vi are the means of the Gaussians and they are found using

Newton-Raphson updates. The covariance matrices Awik and Avi are the inverse of

the negative Hessian matrices, Awik = −H−1
w and Avi = −H−1

v , that are explained below.

For a learning rate η, expert parameters are found by

w
(p+1)
ik = w

(p)
ik − ηH−1

w Gw , (4–11)

where

Gw =
∑
n

h
(n)

i (y
(n)
k − ŷ (n)ik )x

(n) − αikwik , (4–12)

Hw = −
∑
n

h
(n)

i ŷ
(n)
ik (1− ŷ

(n)
ik )(x

(n))(x(n))T − αik .I . (4–13)

Similarly, the updates to the gating parameters follow

v
(p+1)
i = v

(p)
i − ηH−1

v Gv , (4–14)

where

Gv =
∑
n

(h
(n)
i − g(n)i )x

(n) − µivi , (4–15)

Hv = −
∑
n

g
(n)
i (1− g

(n)
i )(x

(n))(x(n))T − µi .I . (4–16)
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Newton-Raphson updates are continued in a loop until the P(Y ,Z |w,v) updates

converge; and the parameters found at the last iteration are taken to be wik and vi ,

where Awik and Avi are their covariance matrices.

The updates for expert hyper-hyperparameters are

ap = a0 +
d

2
, (4–17)

bp = b0 +
1

2
(wTikwik + Trace(Awik )), (4–18)

and similar equations apply for the gate hyper-hyperparameters cp and dp. As a result,

hyperparameter updates become

α(p+1)ik = ap/bp, (4–19)

and

µ(p+1)i = cp/dp. (4–20)

4.1.1 VMEC Lower Bound

Parameter updates are continued until the lower bound converges to a given small

number (e−5 in our case), and the lower bound provides a test of correctness as it is

supposed to be nondecreasing at each parameter re-estimation. Expanding the integral

and evaluating the expectations, we arrive at the closed form solution for the lower

bound as:
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L(Q) =

∫
Q(Θ,Φ,Z) log

P(Θ,Φ,Z ,D)

Q(Θ,Φ,Z)
dΘdΦdZ ,

=
∑
n,i

EZ ,v,w[logP(Y ,Z |X , v,w)],

+
∑
i

E [logP(vi |µi)] +
∑
i

E [logP(µi)] +
∑
i ,k

E [logP(wik |αik) +
∑
i ,k

E [logP(αik)],

−
∑
i

E [logQ(vi)]−
∑
i

E [logQ(µi)]−
∑
i ,k

E [logQ(wik)]−
∑
i ,k

E [logQ(αik)]− E [logQ(Z)],

where

Ew,α[logP(w|α)] =
d

2
[ψ(ap)− log bp]−

d

2
log(2π)− ap

2bp

(
wTikwik + Trace(Awik )

)
, (4–21)

Eα[logP(α)] = a0 log b0 − b0(ap/bp)− log Γ(a0) + (a0 − 1)[ψ(ap)− log bp], (4–22)

Eα[logQ(α)] = − log Γ(ap) + (ap − 1)ψ(ap) + log bp − ap, (4–23)

Ew[logQ(wik)] =
1

2
log |Awik |+

d

2
(log(2π) + 1), (4–24)

EZ [logQ(Z)] =
∑
n

h
(n)
i log h

(n)
i , (4–25)

EZ ,v[logP(Z |vi)] =
∑
n

h
(n)
i log g

(n)
i , (4–26)

EZ ,w[logP(Y |Z ,wik)] =
∑
n

h
(n)
i logP i(y

(n)). (4–27)

Expressions for the gate Eµ[logP(µi)]), Eµ[logQ(µi)]), Ev,µ[logP(vi |µi)]), Ev[logQ(vi)]

are similar to those of the experts. The training algorithm of the VMEC model updates

the parameters through the E and M steps until the change in the lower bound becomes

less than a threshold (e−5 in our case).

4.1.2 Training the VMEC Model

1. For a 1-of-K class problem, initialize the number of experts I , parameters, and the
hyperparameters.

2. E step: Compute the expert and gating outputs ŷ (n)ik , g(n)i as well as the expert
probabilities Pi(y(n)) and the posterior probabilities h(n)i .
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3. M step: Compute the new expert parameters w(p+1)ik and the new gating parameters
v
(p+1)
i using Newton-Raphson updates.

4. Update the hyperparameters α(p+1)ik and µ(p+1)i .

5. Check the convergence of the lower bound. Go to Step 2 if L(p+1)−L(p) > 1e−5;
else terminate.

4.2 Experimental Results on Synthetic Data

Synthetic data was generated by sampling from two Gaussian distributions with

standard deviation 0.1 at means (0.5, 0.7) and (0.7, 0.7), as shown in Fig. 4-2. For

testing, 200 points were generated from each class. For training, the number of points

were increased at each iteration, from 10 points to 60 points per class. At each iteration,

a different set of training points were used.
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Figure 4-2. Synthetic data for the VMEC experiment. Synthetic data were generated by
sampling from two Gaussian distributions with standard deviation 0.1 at
means (0.5, 0.7) and (0.7, 0.7).

When only one expert is used, VMEC and ME give similar results on both the

training and the testing set, as expected. In Fig. 4-3, the classification rates are

displayed for one expert. However, if the number of experts is increased, ME tends
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to over-carve the regions, thus overtrains. This behavior is shown in Fig. 4-4. For five

experts, ME does better than VMEC on the training set, but its classification rates

on the testing set decreases because of over-training. The consistent behaviour of

VMEC is explained by the fact that its gate prefers fewer experts. Ultimately, this

characteristic can be used to determine the maximum number of experts required for the

best classification results.
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Figure 4-3. VMEC and ME comparison on synthetic data for one expert. The number of
training data per class is increased from 10 to 55 with 5 point increments. At
each experiment, a different dataset was generated. For varying numbers of
training data, when there is only one expert, VMEC and ME give similar
results both in the training set and on the testing set, as expected.
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Figure 4-4. VMEC results for five experts. The number of training data per class is
increased from 10 to 55 with 5 point increments.When the experts are
increased, ME does a better job of classification than VMEC on the training
set, but does worse on the testing set. VMEC avoids over-training, and
keeps giving consistent classification rates.

4.3 Experimental Results on the Landmine Dataset

For the landmine dataset, the two classifiers, GRANMA and EHD were described in

Sec. 2.1, and in [21, 25, 45]. Using the confidences obtained from these two classifiers,

VMEC and ME models were run five times using five classes, five experts, and ten fold

cross-validation. The 5 classes represent the high metal mines (HMAT and HMAP),
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Table 4-1. Probability of false alarm (PFA) at 90% probability of detection (PD)
Experiment 1 2 3 4 5 Average
ME 0.13 0.16 0.15 0.18 0.15 0.1540 ∓ 0.0182
VMEC 0.11 0.11 0.10 0.13 0.12 0.1140 ∓ 0.0114

LMAT, LMAP, metallic and non-metallic clutter. The number of experts was found

experimentally. If it is increased, the ME model tends to over-fit, and it either carves

the input space unnecessarily, or learns the same expert, also unnecessarily. On the

average, the VMEC model decreased the probability of false alarms to 11.4 % from

15.4 % of ME at 90 % PD. The individual performances of the ME and the VMEC model

are given in Table 4-1, for each experiment on the mine data. In Fig. 4-5, ROC curves

zoomed around 90% PD are displayed for one experiment with five classes, five experts,

and ten fold cross-validation. In Fig. 4-6, the increase in the lower bound in one of the

ten folds is displayed. The sharp increase in the lower bound corresponds to one of the

hyper-parameter updates.
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Figure 4-5. Landmine detection results for GRANMA and EHD features. ROC curves of
ME, VMEC, GRANMA and EHD. In a setting of 5 classes and 5 experts, for
a 10 fold cross-validation, VMEC model consistently increases detection
rates to around 90/11.6 percent from 90/16.2 of ME.
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Figure 4-6. The lower bound of the VMEC training. A sudden increase in the lower
bound corresponds to an update of the hyper-parameters.

VMEC improved the performance over ME in these experiments with real-world

data, and a part of these results were published in [46]. Since the number of experts is

relatively small, the optimal number was found experimentally. For other datasets that

require more experts, automated approaches as in [7, 10, 102, 103] can be investigated.

Also, the comparisons were performed on networks of depth one, hence an immediate

extension of this work would be to investigate the hierarchical VMEC. On the other hand,

both VMEC and ME models work on static features, and cannot handle time-series

data as features. For example in landmine detection, the confidence values and the

features that were used in the GRANMA and EHD classifiers were obtained with the

assumption that the robot was already on the target, and the target was in the center.

This assumption may work fine for grid based landmine detection efforts, but it does

not use the temporal structure that is found in lane-based landmine detection data. To

incorporate this temporal structure into an ME model, a new model, referred to as the

mixture of hidden Markov model experts is introduced in Chapter 6.
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CHAPTER 5
FUNDAMENTALS OF HIDDEN MARKOV MODELS (HMM)

Hidden Markov models (HMMs) are major tools to analyse time-series data, and

they have been extensively used in a variety of applications, including, but not limited to,

speech recognition [104, 105], landmine detection [106–108], handwriting recognition

[109], behavior detection [110], face recognition [111], music analysis [44], crash

detection [112], and understanding genetic expression [113]. The literature on HMMs is

immense, so in this chapter only the fundamentals of HMMs that relate to this study are

given. Throughout this chapter, the notation by Rabiner et al. [105] will be used, where

an HMM is characterized by the following:

• W = number of states

• M = number of observation symbols

• T = length of observation sequence

• V = {v1, ..., vM}, the discrete set of possible observation symbols

• O = O1O2...OT denotes an observation sequence, where Ot is the observation at
time t, and it is one of the observation symbols V .

• Q = q1q2...qT , a fixed state sequence

• S = {S1,S2, ...,SN}, the individual states

• qt = the state at time t

• The initial state distribution π = {πi}Wi=1, where πi = P(q1 = Si) is the probability of
being in state i at time t = 1.

• The state transition probability A = {{aij}Wi=1}Wj=1, where aij = P(qt+1 = Sj |qt = Si) is
the probability of being in state j at time t + 1 given that we are in state i at time t.

• The observation symbol probability distribution B = {{bj(m)}Wj=1}Mm=1, where
bj(m) = P(vm at t|qt = j) is the probability of observing the symbol vm given that
we are in state j .

• λ = (A,B,π) is the compact notation for the complete parameter set of an HMM.

There are three main problems related to HMMs:
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1. Given a model, what is the probability that the observation sequence was
generated from this model P(O|λ)?

2. Given a model, what is the best state sequence i.e. the best path Q to follow that
maximizes P(Q|O,λ)?

3. How do you find the model that best describes the observation sequences?

The answers to the first two questions are rather standard. The first problem

is efficiently solved using a forward-backward algorithm, while the second can be

solved using the Viterbi algorithm. The answer to the third question has received

much investigation, but the most popular algorithms are the segmental K-means [114]

and the Baum-Welch (BW) [105] re-estimation formulas. These two algorithms are

generative models, and they are applied in an attempt to increase the probability of a

sequence given a model. Additionally, it has been observed that generative models

are not powerful enough to distinguish between some sequences, so discriminative

models have been developed in [115]. In the rest of this chapter, the fundamentals

of BW learning are given in section 5.3.1 and minimum classification error (MCE)

based discriminative learning is briefly explained in section 5.3.2. Finally in section

5.4, a literature review explains the studies that use HMMs to find multiple models from

time-series data.

5.1 Evaluation

The straightforward way to compute P(O|λ) is to find P(O|Q,λ) and P(Q|λ); and

sum their multiplication over all possible state sequences, where

P(O|Q,λ) = bq1(O1)bq2(O2)...bqT (OT ), (5–1)

P(Q|λ) = πq1aq1q2aq2q3...aqT−1qT , (5–2)
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and

P(O|λ) =
∑
Q

P(O|Q,λ)P(Q|λ), (5–3)

=
∑
Q

πq1bq1(O1)aq1q2bq2(O2)...aqT−1qTbqT (OT ), (5–4)

=
∑
Q

πq1

T−1∏
t=1

aqtqt+1bqt(Ot), (5–5)

which is the standard HMM model. To reduce the number of multiplications in computing

this model, forward-backward algorithms are generally used to inductively solve the

summation.

5.2 Decoding

The decoding finds the optimal state sequence associated with the given observation

sequence. Of the many criteria that define what is best, the most widely used criterion is

to find the single best path that maximizes P(Q|O,λ), which is equivalent to maximizing

P(Q,O|λ) [105]. The Viterbi algorithm [116] inductively keeps the best state sequence

for each of the N states as the intermediate state for the observation sequence.

Hence, it gives the best paths for the N states and single outs the path with the highest

probability.

5.3 Reestimation

Reestimation algorithms can be divided into two groups: the generative and

discriminative training approaches. In generative training, Viterbi [116], BW [105],

and segmental K [114] are the most commonly used algorithms. In areas of DNA or

protein-sequence modelling, where Viterbi paths play an important role, Viterbi learning

may be more desirable. If all possible paths are to be considered, BW is preferred.

Recently, variational training of HMMs is becoming more common [117–119] which

has a Bayesian way of learning an approximate posterior distribution. Conversely,

discriminative approaches [20, 115, 120, 121] are based on separating the two (or more)

classes via the utilization of such methods as minimization of classification error.
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5.3.1 Baum-Welch (BW) Training

Maximum likelihood estimation maximizes P(O|λ) over all the parameters λ for a

given observation sequence O. BW, also referred to as the expectation maximization

(EM) algorithm, iterates over the E and the M steps. In the E step, the EM algorithm

calculates the expectation of unknown (hidden) data given a probabilistic model. In

the M step, it computes the maximum likelihood estimate of the complete data, where

the complete data is both the data and the expectation of the hidden states. BW is the

most widely used algorithm to learn the HMM parameters, provides a good generative

solution and it is guaranteed to converge to a local maximum [122], but it is sensitive to

initialization, and may not find the global solution.

5.3.2 Minimum Classification Error (MCE) Training

The MCE model was introduced in [115] and later extended to MCE-HMMs in [123],

where HMMs are the discriminative classifiers. In MCE-HMM, the total misclassification

error is written in terms of an empirical loss function, and the discrete HMM (DHMM)

parameters minimizing this loss are learned using a gradient descent approach.

Let Λ = {λ}Kk=1 be the set of parameters of all classes. Given a set of training

observation sequences {O(n)}, n = 1, 2, ...N, the empirical loss function is defined as:

L(Λ) =

N∑
n=1

K∑
k=1

lk(O
(n); Λ)I(O(n) ∈ Kk). (5–6)

When there are enough training sequences, the empirical loss is an estimate of the

expected loss. Minimizing the empirical loss is equivalent to minimizing the total

misclassification error, and DHMM parameters are estimated by a gradient descent

on L(Λ).

lk(O; Λ) is a sigmoid function with misclassification corresponding to the loss values

in (0.5, 1], computed as

lk(O; Λ) =
1

1 + exp(−ζdk(O) + θ)
, (5–7)
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where d is a misclassification measure of the sequence O. If dk is much less than 0,

meaning correct classification, no loss is incurred. When dk is positive, the classification

error count becomes the penalty. Generally, θ is set to 0 and ζ is set to greater than 1.

The misclassification measure of a sequence for the k th class is computed as

dk(O) = −gk(O, Λ) + log

[
1

1− K
∑
j ,j ̸=k

exp(ηgj(O, Λ))

]1
η
, (5–8)

where η is a positive number and gk(O, Λ) is the log of the likelihood found by the Viterbi

algorithm. When η approaches ∞, the term in the bracket becomes maxj ,j ̸=k gj(X ; Λ).

So dk(X ) > 0 implies misclassification and dk(X ) ≤ 0 means correct decision. The

log-likelihood of the Viterbi algorithm is found by

gk(O, Λ) = log[max
Q
gk(O,Q, Λ)], (5–9)

where

gk(O,Q, Λ) = P(O,Q; Λk) = π(k)q0

T−1∏
t=1

a(k)qtqt+1

T∏
t=1

b(k)qt (ot) (5–10)

With the empirical loss as defined in 5–6; the parameters are trained with a gradient

descent approach.

5.4 Finding Multiple Models from Time-Series Data

Finding multiple models in time-series data dates back to the late 1980s [124]

and has found applications in both clustering and classification problems including

surveillance [125, 126], fMRI analysis [127], seismology [128], speech synthesis [129],

speaker adaptation [130, 131], speaker clustering [132], handwriting recognition [133],

and object classification [134]. The survey in [135] lists many of the online datasets

and [136] provides a comparison of the algorithms in the data mining area. These

approaches learn and generate multiple models within a group of data, and they are

often unsupervised. Some of the algorithms listed below, find multiple models from
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each class of data and test a given time-series sequence on all the models from all the

classes for classification. If the output information is not explicitly used in the algorithm,

we will refer to these approaches as clustering algorithms.

Most of the time-series clustering algorithms convert time-series data to static

data using HMMs and employ the traditional clustering algorithms, such as K-means

or hierarchical agglomerative clustering, on this static data. One of the earliest HMM

clustering papers is by Rabiner et al. [124], where an HMM model was trained on a

training set, all the sequences with poor likelihood scores were separated out, and new

models were learned for the outliers. The recognition rates were significantly enhanced

if a structure was found from the outliers, but the performance was very sensitive to the

threshold for separating the training set into clusters.

A similar approach was taken by Li et al. [137] and Szamonek et al. [138], where

an HMM model was fit to all the data and the number of clusters as well as the number

of states were gradually increased based on the objects with the least likelihoods and

the Bayesian information criterion (BIC). Since these algorithms considered splitting

every model at each iteration, redistributing the objects and relearning the HMMs, they

required a lot of training in very small steps.

A faster way than the top-down approach of splitting the models is the bottom-up

approach of fitting an HMM model to each and every sequence, and clustering these

sequences based on the similarities of their likelihoods or HMM models. Perhaps the

most popular of the earlier clustering solutions was developed by Smyth [139] where

an HMM model was fit to each training sequence, resulting in N HMM models for N

sequences. Then all the N training sequences were tested on all the N HMM models,

and the log-likelihoods were stored in a similarity matrix, as shown in Fig. 5-1. Using this

similarity matrix, the data sequences with similar likelihoods were clustered together into

K groups using hierarchical clustering, as in Fig. 5-2 and a new set of K HMMs were

then trained on these clusters using the BW updates [105]. In the same year, a similar
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approach was developed by Korkmazskiy et al. [140] with K-means clustering on the

log-likelihoods, but the final HMMs were learned with a discriminative HMM model [123]

rather than the BW. In 1999, Oates et al. [141] constructed the similarity matrix from

the dynamic time warping (DTW) values instead of the log-likelihoods, then clustered it

with hierarchical agglomerative clustering and selected a prototype from each cluster.

An initial HMM was fit to the prototype sequence, and all the other sequences were

introduced one by one into the cluster with the retraining of the HMMs.

Likelihood Matrix: Each sequence is tested on each model
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Figure 5-1. Symmetric likelihood matrix. One HMM is trained on one sequence, resulting
in as many HMM models as the number of training sequences. Then each
sequence is tested against all the HMMs, and the symmetrized likelihoods
are stored as a matrix.

The previous approaches in [137, 139, 141] used hard clustering, where each

sequence was assigned to a single cluster, and an HMM was trained only on those

sequences in a cluster. In 2003, Alon et al. [125] introduced a soft clustering approach,

where the expectations of cluster memberships were updated in an EM-type of learning.

Although criticized in [142] for making strong assumptions about the shape of the
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Figure 5-2. Hierarchical clustering of likelihoods.

overall distributions, this approach allowed for the simultaneous learning of the cluster

and the mixture parameters. In 2006, for very large amounts of data, Tsoi et al. [143]

proposed using Gaussian mixture models to group the data into clusters and trained

the HMMs on randomly selected subsets of data from each cluster. More recently,

in order not to make assumptions on the shape of the clusters, spectral approaches

were used in [142, 144]. In [144], the similarity matrix was obtained by modelling each

sequence as a hidden Markov model, just as in [139], but spectral methods were applied

to this similarity matrix for dimensionality reduction. With this approach, the significant

eigenvectors of the affinity matrix were used to map the original samples into a lower

dimensional space. These vectors were then clustered by the K-means clustering

algorithm. Similarly Porikli et al. [145] defines an affinity matrix A whose elements aij

are equal to aij = e−d(si ,sj )/2σ
2, where si and sj are two sequences, and the distance is

computed from d(i , j) = |pij + pji − pii − pjj |, where pij refers to testing sequence si

on the model trained from sequence sj . Then the affinity matrix is decomposed into its

eigenvectors, and clusters are formed using connected component analysis. Instead

of the log-likelihoods, in [142], a probability product kernel (PPK) is used to find the

Gram matrix which is followed by spectral methods, as in [144]. The PPK integrates
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over the entire space of all possible samples given an HMM model, and may capture the

properties of the data better. Among these models, we initialize our model in the next

chapter with [139], however, any of [125, 137, 141, 142, 144, 145] could also be used.

A study closely related to our algorithm has been published by Bicego et al. [134],

who found HMM to be very effective in dealing with object occlusions and used them

for object classification in [27, 146, 147]. They also trained one HMM per sequence, but

instead of clustering the similarity matrix, they treated each row of the un-symmetrized

similarity matrix as a feature vector and used these feature vectors in standard

classification techniques as follows:

1. Given a set of sequences T = {O1...ON} to be clustered, let R = {P1, ...,PR} be a
set of R representative objects where R ⊆ T .

2. Train one HMM λr for each sequence Pr ∈ R.

3. Represent each sequence Oi by a feature vector DR(Oi) =
1

Li


logP(Oi |λ1)
logP(Oi |λ2)

...
logP(Oi |λR)


where Li is the length of the sequence Oi .

4. Perform clustering in Euclidean space using any clustering technique (hierarchical
agglomerative complete link, K-means, etc.)

The main drawback of this approach is the high dimensionality of the resulting feature

space, which is equal to the cardinality of the data set, so dimensionality reduction

was handled in [27] using principal component analysis (PCA) and Fisher discriminant

analysis (FDA), and also using matching pursuits to select a set of representatives.

In a very recent study, Garcia et al. [148] normalize the likelihood matrix so that

each column adds up to one. Hence, they view these columns as the probability

density functions over the approximated model space conditioned on each of the

individual sequences. In doing so, they find the distance between two sequences from

the KL-divergence between the two discrete probability density functions.
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Although it has not been presented as clustering research, one close relative

of our study would be relative density nets (RDN) by Brown et al. [149]. RDN is a

discriminative learning by a network of HMM models in which many small HMMs are

placed into the input layer of a feed-forward network. The hidden layer of the network

performs all pairwise comparisons between the HMMs, and the weighted sum of these

pairwise comparisons are passed through a softmax function to make the final decision.

Also, an alternative to RDNs was introduced in [150]. It is a generative algorithm formed

from the products of HMMs (PoHMM). The algorithm trains the HMMs independently

using BW, but uses gradient based minimization of contrastive divergence to calculate

the log-likelihood of the PoHMM. Although the training of the HMMs is straightforward,

the log-likelihood of the overall architecture requires the use of Gibbs sampling methods

and ends up being computationally very costly.

From a different perspective, clustering can be done to find the different segments

of a sequence. For a music recommendation system, Qi et al. [44] consider a mixture

of HMMs approach, named as the DP-HMM, in which the mixture coefficient is based

on a Dirichlet process (DP) prior. The DP-HMM is used to analyse the characteristics

of different segments of a given piece of music. The number of HMMs in the mixture

is decided by the DP prior, and the learning of the HMM parameters is achieved using

variational methods. To compute the similarity between the HMM mixture models,

samples are generated from each model using Monte Carlo sampling. For a sample set

Sg from the mixture model Mg for music g, and a sample set Sh from the mixture model

Mh for music h, the distance between two HMM mixture models is defined as:

D(Mg,Mh) =
1

2
[log p(Sh|Mg)− log p(Sh|Mh)] +

1

2
[log p(Sg|Mh)− log p(Sg|Mg)]

There are also other studies that define the distance between HMM models,

based on state-observation probability matrices for discrete HMM [151, 152] and for a
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continous HMM [153], for ergodic HMMs [154, 155], for left-to-right HMM models [156],

based on KL-divergence [157–162], based on the probability product kernel [163], based

on the stationary cumulative distribution [164]. A comparative study was published by

Mohammad et al. [165]. These studies use the parameters of the HMM, hence assume

the existence of a true HMM model. Due to this assumption, such distances did not

find a lot of interest in the clustering of time-sequences, for which the HMM model is

unknown. However, it should be possible to incorporate these distances into clustering,

in addition to comparing the likelihoods.
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CHAPTER 6
MIXTURE OF HIDDEN MARKOV MODEL EXPERTS (MHMME)

Time series or sequential data often show multiple patterns owing to the different

contexts that they appear in. For example, electricity usage has seasonal patterns. In

addition, within each season, electricity consumption of socio-economic groups show

different patterns. Another example is electrocardiogram (EKG) heartbeat classification.

Athletes typically have slow resting heartbeats compared to non-athletes, and without

this information an athlete might be considered to have an unhealthy beat. Therefore,

the socio-economic group and even the ethnicity of people define a context in classifying

a healthy vs an unhealthy beat. Unfortunately, unlike these examples, contexts are

generally hard to define, they are often interlaced, and do not have sharp boundaries.

Moreover, context information might be inherent in the data, but not be known to the

data modeler. In such cases, we define a context as a group of similar signatures.

In this chapter, we are introducing a novel model, mixture of hidden Markov model

experts (MHMME), that can both decompose time series data into multiple contexts, and

learn expert classifiers for each context. In this model, a gate of hidden Markov models

defines the contexts, and cooperate with a set of hidden Markov model experts which

provide multi-class classification.

The main advantages of our model can be summarized as follows:

• MHMME model is suitable for time series data and sequential data of varying
lengths due to the use of the hidden Markov models.

• MHMME model provides a divide and conquer approach, is probabilistic, and has
soft boundaries - all of which make it very suitable for context learning.

• There is no hard clustering of the data so sequences can freely move between
contexts and classifiers during training. Moreover, the final decision is a mixture of
the decisions of all the classifiers.

• Learning of the contexts and classifiers is accomplished simultaneously, in one
model.

• MHMME is suitable for multi-class classification.
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The MHHME model extends the ME model to be suitable for time series data by the

use of HMMs. Thus the learning algorithm is completely modified, but the essence of

MEs is retained. While the HMMs at the gates make soft partitions of the input space

and define the regions where the expert opinions are trustworthy, the HMMs at the

experts specialize in finding models that would discriminate among these data. Hence,

multiple models are learned from the data and the detection rates are increased by the

competition of the experts to claim regions of the input space. There is no restriction on

the dimension of the data and varying length sequences can be handled.

In this study, our goal is to increase classification rates by training discriminative

models for the sequences of different classes that would be in the same context

because of their highly similar structures. Our MHMME algorithm can learn these

contexts and classification parameters in one framework, and adjusts itself naturally

during the iterations. Although the idea is similar to the ME, the gate and experts are

now HMMs, and the learning requires the learning of the HMM parameters instead

of the linear weights. The HMM models at each expert can be of different structures

(number of states, etc.) and the algorithm can easily be extended to be a hierarchical

mixture of HMM experts.

In Sec. 6.1, we compare the MHMME model to some of the related models that

have been reviewed in Sec. 3.3 and Sec. 5.4. Then, in Sec. 6.2, we derive the update

equations that combine the ME architecture with hidden Markov model updates, and

provide the training algorithm for the simultaneous probabilistic learning of the contexts

from multi-class data and the discriminative classification of the data in these contexts.

6.1 How ME Compares to Other Models

ME finds multiple sub-regions within the data and trains the experts to specialize

in these regions. Unfortunately, ME models cannot operate on time series data. In

the literature review in Sec. 3.3, a number of models [11, 12, 14, 166] were described

that extend the ME architecture to make it suitable for time series data. These models
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are only applicable to regression and they use a one-step-ahead or multi-step-ahead

prediction in which the last d values of the time series data are used as features in

a neural network. Such models cannot handle data of varying length and the use

of multilayer network-type approaches prevent them from completely describing the

temporal properties of a time series dataset. Additionally, the studies in the ME literature

that combine HMMs and HMEs [15, 86–89] are handling quite different problems despite

the similar names. These models were covered in Sec. 3.3. Briefly, in [86, 88], each

state of the HMM is an ME, whereas in our model, each HMM is a part of an expert. In

[36] one can think of the Hidden Conditional Random Fields as the gate and the SVMs

as the experts, but temporal sequences were not of interest.

Due to the soft-partitioning at the gates, the MHMME model might be compared

to time series clustering algorithms. Most of the time series clustering approaches

reviewed in Sec. 5.4 learn one HMM per sequence to construct a similarity matrix.

However, such approaches start with the assumption that fitting one HMM to one

sequence would give reliable results. This may not always be the case if the sequence is

not sufficiently long enough or if it does not have a repeating pattern. For example, in 2D

shape recognition from boundaries, the sequences are of varying lengths, shorter, and

not self repeating. Moreover, those algorithms learn HMM models that are of the same

HMM topology (same number of states, number of symbols, and the like).

Our MHMME model does not require to fit a single HMM model to a single

sequence. Instead, it uses all the data available and gives a weight to each sequence by

the use of the HMMs at the gate. Then the experts make a classification decision and

learn which HMMs are experts for this weighted data. In addition, because of its modular

structure, MHMME can handle experts with different HMM topologies. Moreover, our

model does not do a hard clustering at the gate, therefore, during learning, the data can

change its probability and start contributing to a different gate or expert.

70



In comparison to neural network type studies such as [149], the differences are

similar to the main differences between neural networks and ME, such as (1) our

gate is obtained from the HMMs, as opposed to being weight vectors; (2) our gate is

input-dependent, whereas the weights are fixed in [149] once they are learned; (3) our

experts provide a discriminative learning between the HMMs and (4) the experts provide

visually and statistically interpretable results. The contexts found at the gates produce

sensible outputs.

6.2 Mixture of Hidden Markov Model Experts

For all the hidden Markov models, we define:

• W = number of states.

• M = number of symbols in the codebook.

• T = length of observation sequence.

• V = {v1, ..., vM} the discrete set of observation symbols.

• O = O1O2...OT denotes an observation sequence, where Ot is the observation at
time t.

• Q = q1q2...qT is a fixed state sequence, where qt is the state at time t .

• S = {S1,S2, ...,SW } are the individual states.

• λik = HMM model for the k th class at the i th expert.

• ψi = i th HMM model at the gate.

• I = number of experts, and i : 1...I is the expert index.

• K = number of classes, and k : 1...K is the class index.

The MHMME architecture is illustrated in Fig. 6-1. In this architecture, the gate has

I HMM models, and its function is to make soft partitions in the HMM space, and define

the contexts where the individual expert opinions are trustworthy. Each branch of the

gate is connected to an expert, and an expert has K HMMs, one for each class. We

denote the HMM models at the gate with Ψ = {ψ}Ii=1, the HMM models at the experts
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Figure 6-1. MHMME architecture. A gate makes partitions in the HMM-space, and the
experts learn to discriminate the classes in these partitions.

with Λi = {λik}Kk=1, and finally, we denote the set of all the gate and expert parameters

as Θ = {Ψ,Λ}.

Let the data be denoted by D = {O,Y }, where O = {O(n)}Nn=1 represents the

input time series sequences, and Y = {y(n)}Nn=1 represents class coded true outputs of

training data such that

y
(n)
k =

 1 x (n) belongs to class k ;

0 otherwise.

The gate and experts make a decision for a multi-class classification problem

following the probability model:

P(D;Θ) =

N∏
n=1

I∑
i=1

gi(O
(n), Ψi) Pi(y

(n), Λi). (6–1)
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where gi(O(n),Ψi) is the gate’s probabilistic estimate that the sequence O(n) belongs to

the HMM-space that is defined by expert i . In other words, gi(O(n),Ψi) = P(i |O(n),Ψi),

the probability of selecting the i th expert given the sequence O(n). The second term

in Eq. 6–1, Pi(y(n), Λi) is the probability that the i th expert has generated y(n) given

the sequence O(n). In the rest of this paper, we will denote gi(O(n),Ψi) with g(n)i , and

Pi(y
(n), Λi) with Pi(y(n)).

The gate’s probabilistic estimate is obtained by a softmax function that considers

the confidences of all the HMM models at the gate, given as:

g
(n)
i =

exp f (O(n)|ψi)∑I
m=1 exp f (O

(n)|ψm)
(6–2)

where f (O(n)|ψi) is the Viterbi log-likelihood of observation O(n) for an HMM model ψi .

Similar to the gate, the HMMs at the experts compute the Viterbi log-likelihood

f (O(n)|λik) = logPHMM(O(n),Q,λik), (6–3)

where the Viterbi likelihood PHMM(O,Q,λik) is

PHMM(O,Q,λik) = π(ik)q0

T−1∏
t=1

a(ik)qtqt+1

T∏
t=1

b(ik)qt (ot). (6–4)

These log-likelihoods are converted to probabilities by a softmax function, and the output

of expert i for class k is ŷ (n)ik computed as:

ŷ
(n)
ik =

exp f (O(n)|λik)∑K
r=1 exp f (O

(n)|λir)
. (6–5)

which is also the mean of its multinomial probability model, i.e., for a given sequence

O(n), expert i produces a prediction with probability Pi(y(n)) following a multinomial

distribution with mean ŷik such that:

Pi(y
(n)) =

∏
k

ŷ ykik . (6–6)
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Finally, the output of the MHMME architecture, {ŷk}Kk=1, is a weighted sum of the expert

outputs:

ŷ
(n)
k =

∑
i

g
(n)
i ŷ

(n)
ik . (6–7)

It is worthy to notice the relationship between the mixture model Eq. 6–7 and its

probabilistic counterpart in Eq. 6–1. The parameters of the MHMME model are learned

using the probabilistic model in Eq. 6–1, which will be explained in the next section.

Typically, the k th class that gives the maximum {ŷk}Kk=1 is selected as the final decision;

i.e., the class of the sequence O(n).

6.2.1 Training of the MHMME model

The marginal distribution P(D;Θ) in Eq. 6–1 can be solved much more simply by

introducing latent variables Z , and by solving the equivalent formulation P(D,Z ;Θ)

with the expectation-maximization (EM) algorithm. These latent variables are Z =

{{z (n)i }Nn=1}Ii=1 such that

z
(n)
i =

 1 if O(n) ∈ Ri ;

0 otherwise.

where Ri is the region specified by expert i . Hence, the complete data distribution

becomes:

P(D,Z ;Θ) =
∏
n

∏
i

(
g
(n)
i Pi(y

(n))
)z (n)i
, (6–8)

So now, in the E step, we find the expectations of the hidden variables [4, 28] as:

h
(n)
i = g

(n)
i Pi(y

(n))/(
∑
j

g
(n)
j Pj(y

(n))). (6–9)

In the M step, we maximize the expected complete data likelihood EZ(logP(D,Z ;Θ)),

which gives the objective function
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Q(Θ,Θ(p)) = EZ(l(Θ,D,Z))

=

N∑
n=1

I∑
i=1

h
(n)
i log g

(n)
i +

N∑
n=1

I∑
i=1

h
(n)
i logPi(y

(n)) . (6–10)

In the M step, his are kept fixed, so the two terms on the right side of the equation are

decoupled, and can be computed independently for the experts and the gates. We refer

to these objective functions as Qg for the gate, and as Qe for the experts, given as:

Qg =

N∑
n=1

I∑
i=1

h
(n)
i log g

(n)
i (6–11)

Qe =

N∑
n=1

I∑
i=1

h
(n)
i logPi(y

(n)) (6–12)

and we search for the HMM parameters that maximize these objective functions:

λ(p+1)ik = argmax
λik

Qe , (6–13)

ψ(p+1)i = argmax
ψi

Qg . (6–14)

Explicitly, the HMM parameters to be estimated in the experts are λik = {A(ik),B(ik)}.

We will denote each element of the A matrix as a(ik)rj with r = 1...W , j = 1...W , and each

element of the B matrix as b(ik)mj with m = 1...M, j = 1...W . To ensure that the estimated

parameters satisfy the constraints arj ≥ 0,
∑W
j=1 arj = 1, bmj ≥ 0, and

∑M
m=1 bmj = 1, we

map these parameters using log, and map them back with softmax functions:
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arj → ∼
arj = log arj , (6–15)

arj =
exp

∼
arj∑W

j ′=1 exp
∼
arj ′
, (6–16)

bmj →
∼
bmj = log bmj , (6–17)

bmj =
exp

∼
bmj∑M

m′=1 exp
∼
bm′j

. (6–18)

Such mappings are common in gradient based training models such as [123, 167].

Let p denote the iteration number. The HMM parameters that maximize the

objective functions are found by gradient ascent updates as:

∼
a
(ik)

rj (p + 1) =
∼
a
(ik)

rj (p) + ϵ
∂Qe(Λ(p))

∂
∼
a
(ik)

rj (p)
, (6–19)

∼
b
(ik)

mj (p + 1) =
∼
b
(ik)

mj (p) + ϵ
∂Qe(Λ(p))

∂
∼
b
(ik)

mj (p)

, (6–20)

where

∂Qe(Λ)

∂ã(ik)rj
=

N∑
n=1

K∑
m=1

h
(n)
i

(
y
(n)
k − ŷ (n)ik

) ∂f (O(n), Λik)
∂a(ik)rj

∂a(ik)rj

∂ã(ik)rj
, (6–21)

∂Qe(Λ)

∂b̃(ik)mj
=

N∑
n=1

K∑
m=1

h
(n)
i

(
y
(n)
k − ŷ (n)ik

) ∂f (O(n), Λik)
∂b(ik)mj

∂b(ik)mj

∂b̃(ik)mj
, (6–22)

and the gradients are
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∂f (O(n),λik)

∂a(ik)rj
=

1

a
(ik)
rj

T∑
t=1

δ(q(n)t = m, q
(n)
t+1 = j), (6–23)

∂b(ik)ij

∂b̃(ik)mj
= b

(ik)
mj [1− b

(ik)
mj ], (6–24)

∂f (O(n),λik)

∂b(ik)mj
=

1

b
(ik)
mj

T∑
t=1

δ(q(n)t = m,QV (O
(n)
t ) = j). (6–25)

Similarly, the updates for the gates are:

∂Qg(Ψ)

∂ã(i)rj
=

N∑
n=1

K∑
m=1

(h
(n)
i − g(n)i )

∂f (O(n),ψi)

∂a(i)rj

∂a(i)rj

∂ã(i)rj
, (6–26)

∂Qg(Ψ)

∂b̃(i)mj
=

N∑
n=1

K∑
m=1

(h
(n)
i − g(n)i )

∂f (O(n),ψi)

∂b(i)mj

∂b(i)mj

∂b̃(i)mj
. (6–27)

Hence, the algorithm computes the expectation of the hidden variables (hi ) in the

E step, and learns the HMMs of both the gates and the experts in the M step. The

complete algorithm is given below.
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Algorithm 6.2.1: MHMME TRAINING(K ,X ,Y )

• Initialize the number of experts I
• Initialize the gating HMM parameters {ψi}Ii=1
• Initialize the expert HMM parameters {{λik}Ii=1}Kk=1
while |(Q(Θ,Θ(p−1))−Q(Θ,Θ(p)))|/Q(Θ,Θ(p) > 1e − 5

do



comment: E STEP

do Compute
Viterbi log likelihoods f (O|λik) from Eq. 6–3
Expert outputs ŷ (n)ik from Eq. 6–5
Expert probabilities Pi(y) from Eq. 6–6
Gating outputs g(n)i from Eq. 6–2
Posterior probabilities h(n)i from Eq. 6–9

end
comment: M STEP

comment: Expert Updates

while Qe in Eq. 6–12 is increasing (i.e. ∆Qe < 1e − 5),
for each expert

do


Map arj →

∼
arj and bmj →

∼
bmj (Eqs. 6–15 & 6–17)

Update A from Eq. 6–19
Update B from Eq. 6–20

Map
∼
arj → arj and

∼
bmj → bmj (Eqs. 6–16 & 6–18)

comment: Gate Updates

while Qg in Eq. 6–11 is increasing (i.e. ∆Qe < 1e − 5)

do


Map arj →

∼
arj and bmj →

∼
bmj (Eqs. 6–15 & 6–17)

Update A using the gradients in Eq. 6–26
Update B using the gradients in Eq. 6–27

Map
∼
arj → arj and

∼
bmj → bmj (Eqs. 6–16 & 6–18)

Compute Q(Θ,Θ(p)) from Eq. 6–10
• Compute ŷ (n)k from Eq. 6–7
• Make a decision k∗ = argmax

k
{ŷ (n)k }Kk=1 .

return (k∗)
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A very important point is that, HMMs at each expert are affected by all the data

points, but the effect of each data point is weighted by the gate. Therefore, even if a

sequence does not have a high enough weight to guide the training of a classifier, it may

still affect the training, albeit slightly. Therefore, HMMs can avoid over-training while they

specialize for each context.

6.2.2 Two-Class Case

In this section, we show the learning for a single expert in a two-class problem.

Remember that at each expert, we are trying to maximize Qe :

Qe =

N∑
n=1

I∑
i=1

h
(n)
i logPi(y

(n)).

At the M step, the his are fixed, so we assume them to be 1. The training for each

expert is decoupled, so assume one of the experts is already picked (hence delete

summation over i ). Also we assume just two classes.

Q =
∑
n

logPi(y
(n)),

=
∑
n

log

(∏
k

ŷ ykik

)
,

=
∑
n

∑
k

yk log (ŷik) ,

=
∑
n

∑
k

yk log

(
exp f (O(n)|λik)∑K
r=1 exp f (O

(n)|λir)

)
,

=
∑
n

∑
k

yk log

(
1

1 + exp (f (O(n)|λi ,r ̸=k)− f (O(n)|λi ,r=k))

)
.

Remembering that the f () terms are the log-likelihoods of an HMM and are

negative numbers, the only way for Q to increase is if the first log-likelihood term is

decreased, and the second log-likelihood term is increased. Thus, at each expert,

the HMMs are adjusted such that the correct hypothesis is more probable, while the

incorrect hypotheses is less probable.
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6.3 Results on Synthetic Data

For an illustrative example, we generated 80 sequences from two classes as

follows: the [0, 1] domain was divided into 10 intervals, and the x values were uniformly

sampled from each of these intervals. Then, for the first class, 20 sequences were

generated from y = x + N(0,σ2) where σ = 0.04, and 20 sequences were generated

from y = −x + 1 + N(0,σ2). This results in 40 training sequences (each of length 10) for

the first class. Similarly, 40 training sequences were generated for the second class, 20

of which were generated from y = x2 + N(0,σ2), and the remaining 20 were generated

from y = −x2+1+N(0,σ2). These sequences are displayed in Fig. 6-2. Using the same

parameters and the same protocol, a test set was generated that also had 80 sequences

with 40 from each class.

The y values were used as the data, and the x values were ignored. Therefore, the

features were just the 1D sequences as if the data are projected onto the y -axis. Then

these values were were discretized to five symbols which are linearly spaced between

[0, 1]. Hence, the classification is actually not as simple as it seems because the data

were discretized to only five symbols, and to learn models that discriminate y = x and

y = x2 without the time information is not trivial.

To discriminate these sequences, an MHMME model was trained with two experts.

All HMMs in the MHMME model were fixed to have three states and five symbols. To

initialize the gate, the data were clustered by k-means into two, and a Baum-Welch

(BW) HMM was fit to each of these clusters. To initialize the experts, the sequences that

were highly weighted by the gates were clustered using the HMM clustering approach

in [139]. With this initialization, the first HMM in the gate immediately gave more weight

to the y = x and y = x2 sequences, and the second HMM in the gate gave more weight

to the y = −x + 1 and y = −x2 + 1 sequences. Upon the MHMME training, the first

expert learned HMM models that discriminate among y = x and y = x2, and the second

80



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Figure 6-2. Synthetic data for two classes. The sequences that belong to the first class
are displayed in red, and the sequences that belong to the second class are
displayed in black. The first class has 20 sequences generated from the
function y = x + N(0,σ2) overlayed on each other, and 20 sequences
generated from y = −x + 1 + N(0,σ2), also overlayed on each other.
Similarly, the second class has 20 sequences generated from the function
y = x2+N(0,σ2), and 20 sequences generated from y = −x2+1+N(0,σ2).

expert learned HMM models that discriminate among y = −x + 1 and y = −x2 + 1. The

patterns learned by each HMM are shown in Fig. 6-3.

Figure 6-3. MHMME results on synthetic data. The first HMM in the gate learns a model
for y = x and y = x2, and the second HMM in the gate learns a model for
y = −x and y = −x2. Then, the first expert learns to disriminate between
y = x and y = x2, and the second expert learns HMM models to distinguish
between y = −x and y = −x2.
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The initial classification rates were 65% on the training data and 60% on the test

data. After MHMME learning, the classification rates reached 98% on the training data,

and 94% on the test data. The improvement in the objective function with respect to the

outer iterations is displayed in Fig. 6-4. With one outer iteration, we mean a complete

E-M step where all the parameters in the experts and the gate are updated. Note

that at each update of an HMM, there are several inner iterations that are run until

convergence, as given in Algorithm 6.2.1.

The red curve is the objective function of the gates, Qg, in Eq. 6–11, and the green

curve is the objective function of the experts, Qe , in Eq. 6–12. Qg and Qe are summed to

get the total objective function Q in Eq. 6–10, which is displayed as the solid blue curve.

The patterns in the iterations point to an interesting observation. In the first iteration,

the gate stays the same, and the experts get a quick update. Then the update of the

expert attains a smaller incline, while the gate shows a significant increase for the next

two iterations. Finally, when the gate updates become almost constant, the experts keep

adjusting themselves until both the experts and the gate reach a steady solution. With

these adjustments at each iteration, the experts strive to best represent the sequences

that are highly weighted by their corresponding gates.

It should be noted that with a different initialization or with different number of

experts, the gate could partition the space in a different way as there are many ways to

solve this problem. In that case, one expert/gate combination learns whatever the other

expert/gate combinations are not learning, and finds meaningful patterns for the data

that received low confidences from the other experts. With this interpretation, one can

compare it to AdaBoost, however, there is at least one major difference: the experts and

the gates are learned in conjuction with each other, and updated simultanously; whereas

in AdaBoost, the experts are learned successively, and there is no going back when an

expert is learned.
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Figure 6-4. MHMME objective function. The objective functions for the gate (Qg)and the
experts (Qe) versus the number of iterations. The total objective function Q
is displayed in blue, which is the sum of Qg and Qe .

6.4 Results on the Landmine Dataset

In landmine detection, landmines and metallic clutter show smoother EMI response

with respect to response of nonmetallic clutter. Moreover, each type of landmine has a

unique EMI response depending on the distribution of metal in the target. However, this

unique response cannot always be observed in its perfect shape, could be cluttered with

noise, and could be scaled depending on the depth the mine is buried at. Therefore,

MHMME model can find multiple models from the data that represent each of these

contexts, and do a better classification than those ignoring the context.

The metal detector’s EMI response can be modeled as

S(w) = A[I (w) + iQ(w)] (6–28)

where w is the frequency, A is the magnitude, I (w) is the real (in-phase) response

and Q(w) is the imaginary (quadrature) response of the complex system. The term

I (w) + iQ(w) describes the shape of the response as a function of the 21 frequencies

[19]. The real EMI response I (w) is plotted against the imaginary EMI response Q(w)
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where w is the 21 frequencies of w . The plot of the real response with respect to the

imaginary response is called an argand diagram. The shape of an argand diagram is

indicative of the type and distribution of metal in a target [18], and mines of the same

type show similar argand curves that are scaled replicas of each other depending on

the depth. To eliminate the variation in magnitude due to depth, typically, the magnitude

is normalized between [0, 1] [2]. Examples of argand diagrams were given in Sec. 2.1.

Using the shape information from the argand diagrams, it is possible to discriminate

between some landmines and clutter. The WEMI sensor’s response is a 21 × 3 × 150

complex data matrix for each grid. Similar to the existing systems [22], the data vector

from the middle channel at the center of the cell was used for analysis. The argand

sequences were discretized to the 50 cluster centers found by fuzzy C-means (FCM)

clustering. These cluster centers are displayed in Fig. 6-5. All the HMMs were set

to have 3 states, found experimentally. In the rest of this section, we will visualize

the properties of MHMME on one fold of a two-fold training. Then we will report our

classification results on a 10-fold cross-validation training/testing.
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Figure 6-5. Clusters centers of the landmine data. The cluster centers are found using
FCM-clustering, and used to quantize the landmine data.

For visualization purposes, the results are displayed on one fold of a 2-fold training.

Of the 888 sequences of mines and non-mines, 444 of them were used in the training.
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The MHMME architecture was set to have 8 experts, which corresponds to 8 HMMs

at the gate, and 2 HMMs at each expert. To initialize the gate, the first 4 HMMs were

computed from the sequences in the mine class (class 1) using the clustering approach

in [139], which was described in the previous chapter. Similarly, the last 4 HMMs were

initialized from the nonmine sequences, using the same clustering approach. This

results in 8 HMMs, which are the initial parameters of the gate. Then, all the training

sequences were tested with all the HMMs, and those that received high likelihoods were

used to train an HMM for each expert. For example, if the gate HMM 1 gave higher

likelihoods to 20 sequences from the first class and 10 sequences from the second

class, the first HMM of the first expert was initialized with BW-HMM training on the 20

sequences from the first class; and the second HMM of the first expert was initialized

with BW-HMM training on the 10 sequences from the second class.

After the MHMME learning, the distribution of the sequences to the gate is shown

in Fig. 6-6. On the x-axis, objects from the mine class and the nonmine class are

separated by the yellow line, such that the first 156 objects belong to the mine class,

and the next 288 objects belong to the nonmine class. The colors represent the true

labels of all these objects. On the y-axis, each object is placed at the gate that has the

highest weight for that object. For example, the 7th gate successfully models metallic

clutter (MC) and nonmetallic clutter (NMC) objects, and does not get confused with any

mines. On the other hand, the second gate predominantly models the HMAP and HMAT

mines, however, does get confused with some metallic clutter. Similarly, the 4th gate

picks some LMAP and LMAT objects, and gets confused with MC mostly. Considering

the metal content of the targets, such a division makes a lot of sense.

Actually, there is no such hard assignment, and all of the assignments in Fig. 6-6

have a probability attached to them. If we find the sequences with the highest probabilities

at each gate, we find the sequences that represent the context that a gate has learned.

These sequences are displayed in Fig. 6-7 and in Fig. 6-8. In these figure, the type
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Figure 6-6. Distribution of the sequences by the gate to the experts. On the x-axis,
objects from the mine class and the nonmine class are separated by the
yellow line, such that the first 156 objects belong to the mine class, and the
next 288 objects belong to the nonmine class. The colors represent the true
labels of all these objects. On the y-axis, each object is placed at the gate
that has the highest weight for that object.

of the mine or nonmine object is given in the y-axis. For example, the first context is

defined by the LMAT mines that have a particular shape. Similarly, LMAT and HMAP

objects of a particular shape share the second context. The Viterbi paths corresponding

to these sequences in Fig. 6-7 and in Fig. 6-8 are given in Fig. 6-9 and Fig. 6-10 to show

the difference in the paths for each context. Classification results are shown in Fig. 6-11.

In (A), sequences that are highly weighted by each gate HMM are displayed. This is

the same figure as Fig. 6-6, only without the colors. The experts help correctly classify
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the sequences that create a confusion, resulting in the final classification in Fig. 6-11(B)

which has less objects that are misclassified.
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Figure 6-7. Contexts defined by the gate HMMs 1-4. Each column shows the top three
argand sequences among all the training sequences that are assigned the
highest weight by the gate HMM. On the y-axis, the type of the mine or
nonmine object is given.

To report our classification results, we ran twenty experiments of 10-fold cross-validation.

The ROC curve for the 10-fold cross-validation experiment is displayed in Fig. 6-12. 90%

true positive rate is attained at 30% false alarm rate. The average classification rate of

the 20 independent runs are given in Table 6-1. Each entry is described below.

Cl-HMM: Sequences from each class are clustered into 4 using [139], and an

HMM is learned for each cluster, resulting in 8 HMMs. A test sequence is assigned to
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Figure 6-8. Contexts defined by the gate HMMs 5-8. Each column shows the top three
sequences among all the training sequences that are assigned the highest
weight by the gate HMM. On the y-axis, the type of the mine or nonmine
object is given.

the class whose HMM yields the highest log-likelihood. This method is also used in

initializing the gate of the MHMME model.

Gate: The HMMs at the gate of the final MHMME model are used as classifiers to

test their individual performance. The first four HMMs are assumed to represent the first

class, and the next four HMMs are assumed to represent the second class.

Experts: The HMMs at the experts of the final MHMME model are used as

classifiers to test their individual performance. A test sequence is assigned to the

class for which it has the highest log-likelihood for any of the 16 HMMs at the experts.
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Figure 6-9. Viterbi paths of the sequences highly weighted by gate HMMs 1-4,
corresponding to the original sequences in Fig. 6-7. Each column shows the
Viterbi paths of the top three sequences among all the training sequences
that are assigned the highest weight by the gate HMM.

MHMME + SVM: For each sequence, the log-likelihoods obtained from all the

HMMs in the MHMME model are concatenated to form a 30-D feature vector, which is

then used in training an rbsvm.

Table 6-1. Classification rates on the landmine dataset for 10-fold training
Model Mean Standard Deviation
Cl-HMM 0.70 0.02
Gate 0.71 0.05
Experts 0.61 0.02
MHMME 0.80 0.05
MHMME + SVM 0.83 0.04
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Figure 6-10. Viterbi paths of the sequences highly weighted by gate HMMs 5-8,
corresponding to the original sequences in Fig. 6-8. Each column shows
the Viterbi paths of the top three sequences among all the training
sequences that are assigned the highest weight by the gate HMM.

6.5 Results on the Chicken Pieces Dataset

The chicken pieces sequences were quantized to 20 symbols which were found

using fuzzy c-means clustering of the data. All the HMMs were set to 3 states and 20

symbols. The MHMME model was initialized to have 10 experts, which corresponds

to 2 experts per class. The HMMs at the gate were initialized using the clustering

approach in [139]. Therefore, by initialization, the context was defined at each gate to

be a special cluster of a given class. Within this context, it is the expert’s duty to learn

models that would discriminate two classes. To be able to compare our results to that in

the literature, a two-fold cross-validation was used.
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Figure 6-11. Sequences highly weighted by the gate are shown in (A). The final
classification result is shown in (B). The objects to the left of the yellow line
should be assigned to class 1, and the objects to the right of the yellow line
should be assigned to class 2. The objects at the top left and at the bottom
right of (B) correspond to the ones that are misclassified.
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Figure 6-12. ROC curve of the MHMME and the MHMME+SVM for the landmine dataset
for a 10-fold cross validation experiment. 90% true positive rate is attained
at 30% false alarm rate.

The contexts (i.e. the similar sequences in the HMM sense) have been shown in

Fig. 6-13. Each column represents the contexts learned by each HMM by the gate.

The three sequences in each column are the ones that attain the highest log-likelihood

among all the training sequences when tested against with the corresponding HMMs

at the gate. The log-likelihoods of the gate and the experts for the training data of a

given class are shown in Fig. 6-14. Each point corresponds to a data sequence from

the training set of a given class. The x-axis shows the difference of the log-likelihoods

between two experts. The y-axis shows the log-likelihoods of the gate HMMs. The

HMMs at the gate define a context, and the HMM experts specialize within these

contexts. As a result, the experts and the gate complement each other resulting in the

butterfly effect: if a gate/expert pair is doing bad in a region of the space, the other

gate/expert pair performs better and dominates the classification decision.
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The sequences for which each gate HMM has the maximum probability is shown

in Fig. 6-15(A). Note that by initialization, every two HMMs at the gate is supposed

to specialize in one class, however, there is a great overlap between these classes.

The experts are able to distinguish between these sequences, resulting in better

classification rates in Fig. 6-15(B). These class assignments are probabilistic, and their

probabilities are shown in Fig. 6-16. A perfect classification would have had red, green,

blue, magenta, and black colors, respectively, in each region between the yellow lines.

Any deviation from this color arrangement is a misclassification. For example, a blue

point in the leftmost region (1st class) indicates a misclassification, and means that the

sequence from the first class has been labeled to belong to the 3rd class (blue) instead

of its true label (red). Note that most of the misclassified objects have lower probabilities

in Fig. 6-16.

When compared to the ME-only and HMM-only models, our results show that

an the combination of ME and HMM models in an MHMME model increases the

performance of any single classifier. In addition, we compare MHMME to its individual

components, i.e. the HMMs at the experts and at the gate. Our results show that the

MHMME combination of the individual components increase the classification rates.

Each classifier is briefly described below.

PCA+ME: To bring all the sequences to a manageable fixed length for ME, all the

sequences are interpolated to length 110, and principal component analysis (PCA) is

applied. Sequences are transformed using the 10 most significant eigenvectors, and

feature vectors of length 10 are then used to train an ME model.

PCA+VMEC: The same procedure of ME+PCA is applied, but using variational ME

for classification (VMEC) instead of ME [46]. The gamma hyperparameters are set to 1.

HMM: A single HMM is trained per class, using Baum-Welch training [105]. A test

sequence is assigned to the class whose HMM (either of the two HMMs) yields the

highest log-likelihood.
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Figure 6-13. Contexts learned by each HMM at the gate. Three sequences that a
corresponding HMM is most confident is given in (A)-(J).

Cl-HMM: Sequences from each class are clustered into 2 using [139], and an HMM

is learned for each cluster, resulting in 10 HMMs. A test sequence is assigned to the

class whose HMM (either of the ten HMMs) yields the highest log-likelihood. These

HMMs are also used in initializing the gate of the MHMME model.

Gate: The HMMs at the gate of the final MHMME model are used as classifiers to

test their individual performance.

Experts: The HMMs at the experts of the final MHMME model are used as

classifiers to test their individual performance.
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Figure 6-14. The log-likelihoods of the gate and the experts for data of a given class.
Each point corresponds to a data sequence from the training set of a given
class. The x-axis shows the difference of the log-likelihoods between two
experts. The y-axis shows the log-likelihoods of the gate HMMs.
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Figure 6-15. Classification results of MHMME on the chicken pieces dataset.
Sequences highly weighted by the gate are shown in (A). Final
classification result is shown in (B). Yellow lines indicate the true labels of
the objects on the x-axis, and the classification results are given on the
y-axis.

MHMME + SVM: For each sequence, the log-likelihoods obtained from all the

HMMs in the MHMME model are concatenated to form a 15-D feature vector, which is

then used in training an rbsvm.
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Figure 6-16. The probability corresponding to each decision in Fig. 6-15(B) is shown.
The legends on the right side show the color of the classifier decision. A
perfect classification would have had red, green, blue, magenta, and black
colors, respectively, in each region between the yellow lines. Any deviation
from this color arrangement is a misclassification.

The chicken pieces dataset has been previously investigated in the literature.

The study by [147] learns multiple HMMs and inputs the outputs of HMMs as features

to an SVM. These classifiers are briefly described below, and the classification rate

comparisons of these classifiers are given in Table 6-2.

rbsvm + log-space: One HMM is learned per class. Then, each sequence is

represented by a 5-D feature vector, which are the log-likelihoods obtained from the 5

HMMs. These feature vectors are then used in training a radial basis support vector

machine (rbsvm) [168]. The classification rates were taken from [147].

rbsvm + emit-space: Similar to the previous approach, a 3 state HMM is learned

per class. For each sequence and each HMM, the sum of the emission probabilities at a
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given state are recorded. These emission probabilities are then concatenated to form a

15-D feature vector, which is then used in training an rbsvm as detailed in [147].

The classification rates of these classifiers are given in Table 6-2. These rates

are the average of 20 independent training runs, each of which employs a 2-fold

cross-validation. Note that there are 5 classes, so a random classification would be

20%.

Table 6-2. Classification rates on the chicken pieces dataset for 2-fold training
Model Mean Standard Deviation
PCA + ME 0.43 0.01
PCA + VMEC 0.44 0.01
HMM 0.41 0.05
Cl-HMM 0.61 0.03
Gate 0.59 0.08
Experts 0.53 0.04
MHMME 0.73 0.02
MHMME + SVM 0.87 0.01
rbsvm + log-space 0.75 0.005
rbsvm + emit-space 0.80 0.005

Among these classifiers, PCA+ME and PCA+VMEC are the two ME-only methods,

whereas the HMM and the Cl-HMM are the HMM-only methods. When compared to

these, MHMME performs better than an HMM-only and an ME-only method. In addition,

the final output is a combination of the experts with a gate, and the combination is

better than the individual experts and the gate. MHMME results are comparable to an

SVM trained on log-likelihoods. Moreover, MHMME+SVM surpasses any of the other

algorithms.

6.6 Discussion and Future Work

The MHMME algorithm allows for competitive learning at the experts. If one expert

makes a better prediction than the others, it receives a higher weighted data point. On

the other hand, it also learns to ignore the sequences that are handled better by its

competitors. Due to the competition of the clusters, one expert may try to model all or

most of the data. When this happens, the other experts act like trash collectors, and
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collect whichever sequence does not fit well with the competing model. In such cases,

classification rates increase if the expert can find a pattern in this outlier data.

Although we only used a single layer model, it is mathematically possible to easily

extend it into a hierarchical model. In the future, it would be interesting to see whether or

not another level of hierarchy would increase the classification rates. It is also possible

to use variational learning, and investigate the optimum number of clusters, as well as

the number of states in each HMM.
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CHAPTER 7
CONCLUSION

This research addresses the problems encountered when designing classifiers

for classes that contain multiple subclasses whose characteristics are dependent on

the context. It is sometimes the case that when the appropriate context is chosen,

classification is relatively easy, whereas in the absence of contextual information,

classification may be difficult. Therefore, in this study, simultaneous learning of context

and classification has been addressed for static and sequential data.

The mixture of experts model has been applied to the landmine detection problem

and has been shown to increase the classification rates of two other classifiers. The

ME model provides a probabilistic approach for dividing the data into regions and for

learning experts in each region. To prevent the ME from over-training, a variational ME

classification (VMEC) model has been introduced, and a lower bound for VMEC training

has been derived. Results have been demonstrated for classes that contain multiple

classes. The VMEC learning has been shown to further increase the classification rates

of ME on the landmine dataset while providing regularized parameters and distributions

for the parameters instead of point estimates.

Thirdly, a novel method, mixture of hidden Markov model experts (MHMME) has

been developed. The updates of HMM parameters in an ME framework has been

derived, and the benefits of ME has been extended to time-series data. The MHMME

model allows for the simultaneous probabilistic learning of the sub-regions from

multi-class sequential data and the discrimination of the classes in these sub-regions.

The output is a mixture of the HMM decisions, but the mixture coefficient is not fixed

once it is learned, rather it depends on the input data. The MHMME model has been

tested on a synthetic dataset, the landmine dataset and the chicken pieces dataset. It

has been shown to perform better than ME-only and HMM-only models, and do well in

comparison to state-of-the-art models.
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