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Abstract
This paper presents the summer 2007 e�orts for the landmine detection

project. The e�orts have been concentrated around understanding the
basics of landmining, executing the current algorithms and de�ning the
current problems with these current algorithms with some emphasis on
improving them. For this purpose, I started the summer semester with
some image processing on the GPR data. The image processing techniques
mostly included the implementation of the anisotropic di�usion �lter and
frequency based �ltering techniques. These algorithms were tested on the
baseline hidden Markov Models (HMM); and didn't show any signi�cant
improvement simply on the testing. The idea that they could actually
give a better output if the image processing techniques were applied to
the training data, made us progress into the continuous density HMM
code. With the frequency domain image �lters, I tried to get rid of the
EMI noise, and was actually successful in doing so with a median �lter.
Luckily, I also saw that we were able to get rid of a good bunch of noise
by taking the mean in the down track direction. After understanding
the CDHMM code, I tried to improve it with batch training and receiver
operating characteristic (ROC) training. The result of the training is open
to improvements.

Index terms: Landmine detection, CDHMM, ROCA training, Batch
training, Anisotropic Di�usion Filter.
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1 INTRODUCTION
Over thirty-nine countries � mostly spread into Africa, Asia, Europe, Middle
East and South America � su�er from the threat of currently buried 60 million
landmines; around 26000 people a year are wounded or killed by landmines; yet
there are around 35 countries that are still producing mines; and only about
twenty-�ve nations renounced or prohibited the use of mines [2, 6]. With the
production of more modern mines, the conventional mine detection techniques;
namely using metal detectors and probing ( pushing a probe into the ground
and lifting gently), needed to get supplemented with more modern detection
techniques since probing can initiate some of the mines, and metal detectors
may miss the more modern mines with plastic casings and very low metal con-
tent.With the initiative of the United States in 1997 to start a humanitarian
demining e�ort to eliminate the threat of landmines by 2010 [1], long range
detection from airborne platforms and the short-range imaging detection us-
ing Ground-Penetrating Radars (GPR) have found considerable interest. The
long range methods proved to be useful to identify safe areas to start a mine
search; whereas the ground penetrating radars, mostly vehicle-mounted; operate
between the ranges 0.3 to 2GHz, can detect individual landmines.

Fig.1 shows a vehicle mounted GPR. As the vehicle moves, the GPR system
radiates short pulses of electromagnetic energy from its transmitting antenna;
and receives back the re�ected energy with its receiver antenna. If the EM waves
hit a surface with a di�erent dielectric constant, the waves that are collected
back give a hint of the underlying object. As shown in Fig.1, landmines appear
as shapes similar to a hyperbola in time-domain GPR signals.

So researches have been trying to detect these hyperbolic shapes with image
processing and machine learning steps, however; it is not very easy to detect the
mines considering the facts that, (i) the permittivity and hence the output of
the GPR varies with the frequency of the applied �eld, the type of soil, humidity
and temperature; (ii) there is a large variety clutter that can be found in the soil
(grass, wood pieces, bottles, nails to name a few) that a�ects the outcome of
the learning steps; and (iii) there are hundreds of di�erent mine types. Hence,
research is going on to di�erentiate the mines from the other clutter and the soil
itself; and this report will give our e�orts in using the GPR data to successfully
detect the mines.

In Figures [3 - 9], examples of low metal anti personal mines, high metal anti
personal mines, high metal anti tank mines, low metal anti tank mines, metallic
clutter and GPR clutter are shown respectively. It can be observed that with
bigger mines such as anti-tank mines, the hyperbolic signatures become more
signi�cant. On the other hand, clutter may have very similar signatures to mine.

2 PREPROCESSING
In many cases, vehicle-mounted system cannot maintain the radar antenna at a
�xed distance above the ground, and hence the ground should be aligned before
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Figure 1: A GPR mounted vehicle showing the time doming GPR signal collec-
tion. Adopted from [4].

Figure 2: Landmines appear as hyperbolas in time-domain GPR data. Adopted
from [3].
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Figure 3: Representatives of Low Metal Anti Personal Mines
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Figure 4: Representatives of High Metal Anti Personal Mines
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Figure 5: Representatives of Low Metal Anti Tank Mines
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Figure 6: Representatives of High Metal Anti Tank Mines
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Figure 7: Representatives of Metallic Clutter
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Figure 8: Representatives of GPR Clutter
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Figure 9: Representatives of Background

further processing. Fortunately, the radar re�ection from the ground (ie. ground
bounce) dominates the rest of the signal, and it can be used to align the ground
position [4]. For this reason, and also to clean the data from the noise and other
artifacts, a number of preprocessing steps is necessary. The processing steps will
not be described in detail here, but it will be illustrated with the intermediate
results, and we hope that it will give an idea to the reader why these steps were
needed. In the later sections, we will show our results for trying to improve
these processing steps. As seen in Fig. 10, the preprocessing steps get the data
from a non-visible condition Fig. 10(a) to a clean output after a couple of steps.
The �rst step is to subtract the mean in the depth direction from the data. This
results in Fig. 10(b) is avid of the DC noise from the GPR. In both Fig. 10(a)
and (b), it is clear that the ground (the top line) is not aligned. This is because
of the ground bounce of the vehicle the GPR is mounted to. To remove this
artefact, the haircut algorithm best explained in [4] identi�es the peak signals
which give the location of the ground bounce, and aligns these peaks as shown
in Fig. 10(c). Later, the top few samples are discarded, and the remaining data
is down-sampled for speed purposes as shown in Fig. 10(d). The data given in
the �gures was originally 343× 24× 61 and got sampled to 171× 24× 61 where
the structure of the 3D data is (depth x channel x scan). In the last step of
preprocessing, the background is removed by normalizing the data in x direction
(cross-track) as best explained in [5]. In Fig. 11, the e�ects of the preprocessing
steps are shown on various kinds of mine and clutter; as well as the resultant
second derivatives that are used in feature extraction are displayed.

11



TMRP−6

50 100 150

50

100

150

200

250

300

350

Depth mean removed

50 100 150

50

100

150

200

250

300

350

After haircut

50 100 150

50

100

150

200

250

300

After downsampling

20 40 60

20

40

60

80

100

120

140

160

Background subtraction

20 40 60

20

40

60

80

100

120

140

160

2nd derivative

20 40 60

20

40

60

80

100

120

140

160

Figure 10: Preprocessing steps from left to right, top to bottom shown on an
anti-tank mine signature: The original data (a); The mean in the depth direction
is subtracted from the data to delete the GPR noise (b). The ground is aligned
by the haircuts algorithm (c). Haircuts removes the bouncing e�ects of the
GPR by �rst identifying the signal peaks where the ground bounce occurs, then
it aligns these peaks. After the haircuts algorithm, the data is down-sampled
(d), and normalized (e). The second derivatives can now be computed (f) for
feature extraction.
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(c) High metal AP (d) Low metal AT
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(e) High metal AT (f) GPR clutter

Figure 11: The e�ects of preprocessing are shown on the di�erent kinds of mine
and clutter: Background data in (a); Low metal anti personnel mine in (b);
High metal anti personnel mine in (c); Low metal anti tank mine in (d); High
metal anti tank mine in (e); GPR clutter in (f).
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Figure 12: The original mine data (a) and a single channel from the mine data
which shows strong EMI (b) .

2.1 Frequency Domain Filtering
A careful look at the data showed the existence of EMI (electromagnetic inter-
ference) noise in the data as shown in Fig. 12(a). To understand the properties
of the EMI noise, I looked at both the time domain and frequency domain char-
acteristics of the data channel by channel as shown in Fig. 12(b). The channel
by channel signal display for one mine data is given in Fig. 2.1(a) and (b). Al-
though the EMI noise stands distinct from the background in the time domain
signals, it is not occurring at the same place or at the same frequency; but rather
it is spreading into various frequencies. To cancel this noise, I tried lowpass �l-
ters that would attenuate the high-frequency content of the data that appear as
sharp changes as in EMI; the characteristics of the Butterworth lowpass �lter
used for this purpose is given in Fig. 14(a). I also tried to understand if the EMI
falls into a speci�c frequency; and hence used a Butterworth band reject �lter as
shown in Fig. 14(b). The experiments with the band reject �lter indicated that
there is no speci�c frequency that the EMI is occurring at, and the low-pass
�lter is actually not a very good idea as it also attenuates the edges which could
possibly belong to mines. As a result, I found taking the median to be a very
quick and e�ective way to get rid of the EMI without distorting the image too
much.

While playing with the frequencies, the FFT spectrum of the 2D landmine
data revealed the existence of a DC frequency in the data. Deleting this fre-
quency (Fig. 15(a)) corresponds to subtracting the mean in the downtrack direc-
tion and cleans some of the background noise very well as shown in Fig. 15(c).

2.2 Edge Enhancing Anisotropic Di�usion Filtering
The di�usion equation

∂tu = div(D∇u)
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Figure 13: EMI shows a di�erence in frequency domain, but the signal is not
structured and can be spread into various frequencies.
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(a) Butterworth Lowpass Filter (b)Butterworth Band Reject Filter:
H(u, v) =

1

1 +
[√

u2+v2

r0

]2n H(u, v) =
1

1 +
[

D(u,v)∗W
D2(u,v)−D2

0

]2n

Figure 14: The �lter parameters are n: �lter order, r0:cuto� frequency, D0: the
distance from the center of the spectrum to the middle part of the band which
is desired to be rejected, W : width of the band, D: the distance of the point
(u, v) to the origin of the Fourier Transform cuto� frequency

where the original image is the initial condition u(x, 0) = f(x) is used as an edge
enhancing �lter with a careful selection of the di�usion tensor D, such that the
di�usion is preferred along the edges with respect to the di�usion perpendicular
to them.Therefore, we construct an orthonormal system of eigenvectors v1, v2

of the di�usion tensor D such that
v1 ‖ ∇uσ and ve ⊥ ∇uσ. So the choice of eigenvalues λ1 = 1 − exp( −1

|∇uσ|2 )
and λ2 = 1 solves such a problem. Then the eigenvectors are calculated from

v1 = [∂ux ∂uy]/
√

(∂2ux + ∂2uy)

v2 = [−∂uy ∂ux]/
√

(∂2ux + ∂2uy)

are used to form the di�usion tensor D as:

D =
[

v1 v2

] [
λ1 0
0 λ2

] [
vT
1

vT
2

]

Then the �ltered image is found through iterations as:

Imt+1 = Imt+1 + ∆T ∗ div(D∇u)
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(a) The 2D FFT has a single vertical frequency. (b) The vertical frequency is �ltered.

(c) Original data (d) Some noise is gone after �ltering.

Figure 15: The FFT spectrum of the 2D landmine data revealed the existence of
a DC frequency in the data. Deleting this frequency corresponds to subtracting
the mean in the down-track direction and cleans some of the background noise
very well.
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Figure 16: At �rst, I applied the anisotropic di�usion �lter on the data just
after haircuts. The original mine on the left is enhanced on the right with
anisotropic di�usion �lter. For this particular image, the �lter parameters are
set to ∆T = 0.1, No.Of Iterations = 25, Filter size = [3 3], σ = 0.2. However,
with this approach, the ground is also �ltered and the mines close to the ground
can get mixed with the ground and get deleted at the background removal
process. Hence we thought that it might be a better idea to apply it after the
background removal which is shown in the next picture.

At �rst, I tried the anisotropic di�usion �lter on the data just after haircuts
as shown in Fig. 16. The original mine on the right is enhanced on the left with
anisotropic di�usion �lter. For this particular image, the �lter parameters are
set to ∆T = 0.1, No.Of Iterations = 25, Filter size = [3 3], σ = 0.2. However,
with this approach, the ground is also �ltered and the mines close to the ground
can get mixed with the ground and get deleted at the background removal
process. Hence we thought that it might be a better idea to apply it after the
background removal which is shown in the next picture.

With the application of the anisotropic �lter after the background removal,
the results were as shown in in Fig. 17. Although there is some enhancement, it
is dependent on the parameter selection and did not improve the test results. It
might be worth giving a try both on the training and testing data with carefully
selected parameters.
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TMRP−6 Anisotropic filtered 2nd deriv orig. 2nd deriv after filter

(a) High Metal AT Mine
Blank Anisotropic filtered 2nd deriv orig. 2nd deriv after filter

(b) Blank
M−14 Anisotropic filtered 2nd deriv orig. 2nd deriv after filter

(c)Low Metal AP Mine
MAI−75 Safety Pin Anisotropic filtered 2nd deriv orig. 2nd deriv after filter

(d) Metallic Clutter

Figure 17: Anisotropic di�usion results on four di�erent signatures. Displayed
are from left to right, the original image, the �ltered image, the original second
derivatives for feature extraction, the e�ect of �ltering on the second derivatives.
Filtering has somewhat reduced the noise, but its parameters should be cleverly
tuned so as not to lose the small mines, and not to introduce extra sharpened
edges that look like mines.
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3 BASELINE HIDDEN MARKOV MODELS
The landmine detection framework introduced in [5] uses the Hidden Markov
Models to assign a con�dence that a mine is present at a point. The notation
for a discrete HMM is given as:

T the length of the observation sequence (total number of time steps)
N number of states in the model
M number of observation symbols
S S1, S2, ..SN states
Q q1q2..qT state sequence
V v1, v2, ..vM discrete set of possible observation symbols
qt state visited at time t
A aij = P (qt+1 = Sj |qt = Si), state transition probability distribution;
B bjk = P (vkatt|qt = Sj), observation symbol probability distribution in
state j;
π πi, πi = P (q1 = Si), initial state probabilities;

The compact notation Λ = (A,B, π) is used as the parameters of the HMM.
Given an observation sequence O = O1, O2, .., OT and a model Λ, the Viterbi
algorithm is used to �nd the optimal state sequence associated with the ob-
servation sequence, and the Baum-Welch algorithm is used to learn the model
parameters. So, we would like to have a con�dence that a mine is present
at a position (x,y) on the surface being traversed. Hence, the observation
sequence at a point (x, y) is taken as the sequence of O(x,y-7), .... O(x,y-
2), O(x,y-1), O(x,y), O(x,y+1), . O(x,y+7). Each of these observation se-
quences encode information about a mine signature; and are obtained from the
second derivatives of the processed data as explained in detail in [5]. These
second derivatives are clipped and normalized and a sixteen dimensional ob-
servation vector is formed from the positive anti diagonal, negative anti diag-
onal, positive diagonal and negative diagonal edges associated with a point.
In our implementation, the for both the background and the mine models,
M = 3, N = 3, dim = 4; sequencelenght = 15,minimumsequencelength = 7;
hence the states of the mine model are the leading edge, center and trailing edge
of a mine. Using the output of the Viterbi algorithm, a con�dence map is pro-
duced as C(x, y) = log(P (O(x, y), Q∗|λmine))− log(P (O(x, y), Q∗|λbackground)).

Below is the results of this algorithm. Fig. 18 shows the scatter plot using the
baseline HMM algorithm, Fig. 19 shows the scatter plot using a metal detector,
and Fig. 20 is the fusion of the two using geometric and arithmetic means.
Mathematically, the fusion is done as

PD = (
x1 + x2

2
+
√

x1 × x2)

In a scatter plot, we ideally we want all the mines above the background
and clutter con�dences. With these plots, the receiver operating characteristic
curve is shown in Fig. 21 with 90/48.1 detection for HMM alone, 90/23.1 with
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metal detector alone, and 90/23.1 by the fusion of both.

4 MCE TRAINING OF CDHMMS
Continuous Density Hidden Markov Models (CDHMMs) are very similar to the
aforementioned discrete HMMs, with the di�erence that the matrix B is now a
set of probability density functions, one for each state. Hence, in addition to
the parameters de�ned in the previous section, we have

bj(ot) = ΣM
k=1cjkN(ot;µjk, σjk)

where

N(ot; µjk, σjk) =
1

(2π)D/2|∑jk |1/2
e

1
2 (ot−µjk)T P−1

jk (ot−µjk)

is a multivariate Gaussian density, D is the dimension of the feature vector
ot and cjk, µjk, σjk are the weight, mean and covariance of the k-th Gaussian
component of the Gaussian mixture density at the state j.

In [8], minimum classi�er error (MCE) training is applied to the continuous
density HMMs. The parameters of the MCE training are updated using a
probabilistic descent approach. In MCE training, a misclassi�cation measure is
introduced as:

di(O) = −giO; Λ + log(
1

M − 1

∑

j,j 6=i

exp[gt(O, Λ)η])1/η

where the class conditional likelihood functions are

gi(O,Λ) = P (O|Λ(i))

and the classi�er operates under the following decision rule:

C(O) = CiifgiO; Λ = maxjgj(O, Λ)

For an ith class observation O, di(O) > 0 means misclassi�cation and di(O) <
0 is correct classi�cation. This misclassi�cation rule is embedded into a sigmoid
function as

l(d) =
1

1 + e−γd+θ

Hence the expected loss is

L(Λ) =
M∑

i

∫
li(O; Λ)p(O)dO

With the generalized probabilistic descent algorithm, we try to update the
parameter set Λ so that the expected loss can be minimized, and the update
equation for Λ is
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Figure 18: HMM Scatter Plot. In the scatter plots, we ideally want all the
mines above the background and the clutter con�dences.
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Figure 19: Metal Detector Scatter Plot. In the scatter plots, we ideally want
all the mines above the background and the clutter con�dences.
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Figure 20: Fusion of HMM and Metal Detector using Geometric and Arithmetic
means
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geomean hmm md: 100/35.6 95/26.0 90/23.1 (m vs b)100/0.0 95/0.0 90/0.0
hmm: 100/79.8 95/64.4 90/48.1 (m vs b)100/57.5 95/27.5 90/17.5
md: 100/95.2 95/31.7 90/23.1 (m vs b)100/92.5 95/7.5 90/0.0

Figure 21: Landmining ROC's! : 90/48.1 detection for HMM alone, 90/23.1
with metal detector alone, and 90/23.1 with the fusion of both.
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Λt+1 = Λt+1 − εt∇l(Ot; Λt)

The gradients of the loss function are given in [8] in Eqns. (26) through (42).
Using this algorithm, a glimpse into the training updates is shown in Fig. 22.

The MCE is a nice approach in the sense that we are not �tting a distribution
to the training data; hence it is not a�ected by the mismatch between the
assumed and true distributions of the data. On the other hand, it is a gradient
descent method, and the algorithm is highly dependent on the sigmoid function
as well as the step sizes.

5 IMPROVEMENTS TO MCE TRAINING OF
CDHMM

Although the MCE training looked like a good training algorithm (ie. on the
training set, it was learning beautifully), when it comes to testing, it is not even
close to the baseline HMM within my evaluations. It looks like it is overtraining
too much, and one reason for this might be the online training nature of the
code, which takes the training sequences one by one and learns for every single
one of them. For this reason, I implemented the batch training.

Another idea that we worked on is the ROCA training. In landmining,
ultimately, the success of an algorithm is judged by its receiver operating char-
acteristic (ROC) curves; hence it is a good idea to train the algorithm such
that the area under the ROC curve is maximized. ROCA training algorithm
introduced in [7], requires di�erentiable functions, which were already available
in the MCE training. Hence, using the previously introduced loss function, we
were able to implement the ROCA training.

5.1 Batch Training
In the online DCHMM algorithm, the data is taken one by one, and as the
data is taken, the loss function and hence the parameter set is updated. This
algorithm is quick in updating the parameters; however, since it learns for every
data, it can overlearn. On the other hand, with batch training, all the data is
collected at once, the gradients are accumulated as the data is encountered, then
the loss function and hence the parameters are updated from the accumulated
gradients after all the data is seen. The procedure for batch training can be
outlined as shown in Fig. 23. The scatter plot is given in Fig.24, and the ROC
curve is given in Fig.25. The result are too good so I believe something is wrong.
I am still working on it.

5.2 ROCA Training
It is clear that at the end of the learning we look at the receiver operating char-
acteristic (ROC) curves. Hence, a genius algorithm in [7] takes the ROC curves
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Figure 22: The learning steps of Online MCE learning for CDHMM. At the end
of the iterations, the algorithm learned all the mines, but possibly overlearned.
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Figure 23: Procedure For Batch Training
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Figure 24: Scatter plot from batch training
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Figure 25: ROC curve after batch training
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and tries to minimize the distance under them. The algorithm presented there
requires the derivatives be known, which makes the MCE a perfect candidate
to apply this algorithm. So the ROCA training algorithm is given as:

dij(θ) = f(xi; θ)− f(yj ; θ)

J(∆T ) =
1

∆T.MA

M∑

i=1

N∑

j=1

Tij

Tij = {
a) 0 if (i, j) | dij(θ) ≤ 0
b) dθ

ij if (i, j) | dij(θ) ∈ (0, ∆t]
c) ∆t if (i, j) | dij(θ) > ∆t

Algorithm: ROCA Training

Initialize θ
Do until stopping criterion reached

1. Compute f(xi; θ) and f(yi; θ) for every training sample

2. Set ∇ave
θ J(∆t) = 0;

3. For each pair of training samples xi and yj

4. Check if case (b) is satis�ed. If yes,

• Compute∇i,j
θ J(∆t) from the gradient update formulas of MCE train-

ing
• Set ∇ave

θ J(∆t) = ∇ave
θ J(∆t) +∇i,j

θ J(∆t)

5. Update θ = θ + µ∇ave
θ J(∆t)

6 CONCLUSION
I have found landmine detection as a very interesting real-world problem with
endless future directions into machine learning, computer vision, fusion, statis-
tics and even heuristics. The well-known machine learning problems such as
parameter selection and overtraining are easily observed here with no doubt;
and the detection rates are in 90/30's with lots of possibility for enhancement. I
�nd myself lucky to have touched all the areas of this problem during my sum-
mer semester; in the very basics with image processing applications, HMM's
for machine learning and metal detector and GPR fusion. And I have to ad-
mit, in some of the clutter cases where I assumed a mine from GPR signatures;
the fusion of metal detectors and GPS's made a far better job than me, so my
hopes are high that this research will really bene�t those who su�er from the
consequences of wars even long time after them.
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