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Abstract — In the United States, more than 12000 renal transplantations are per-
formed annually; but the transplanted kidneys face a number of surgical and medical
complications that cause a decrease in their functionality. To understand the rea-
sons of this functionality decrease; recently, Dynamic Contrast Enhanced Magnetic
Resonance Imaging (DCE-MRI) has found considerable attention due to its supe-
rior functional and anatomical information. The biggest challenge in the analysis
of DCE-MRI is seen in the segmentation of the kidneys from the abdomen images;
because of the high noise and partial volume effects introduced during the rapid and
repeated scanning process. In this paper, we introduce a general framework for the
segmentation of the kidneys from DCE-MR images of the abdomen. The proposed
segmentation algorithm consists of three main steps. In the first step, an average
kidney shape is constructed from a dataset of previously segmented kidneys; and an
average signed distance map density is obtained describing the shape of the kidneys.
In the second step, the gray level density is calculated for a given new kidney im-
age using a modified expectation maximization (EM) algorithm. In the third step, a
deformable model is evolved based on the two density functions obtained from the
previous two steps: the first one describes the prior shape of the kidney, and the
second one describes the distribution of the gray level inside and outside the kidney
region. The new deformable model is able to handle intricate shapes without get-
ting stuck in edge points; and gives very promising results that are comparable to
radiologists’ segmentation.

1 Introduction

Acute rejection - the immunological response of the human immune system to the foreign
kidney - is the most important cause of graft failure after renal transplantation [1], and the
differential diagnosis of acute transplant dysfunction remains a difficult clinical problem.
Currently, the diagnosis of rejection is done via biopsy, but biopsy has the downside effect
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Figure 1:Current protocol. For each subject, 150 abdomen images are taken from one cross-section with
4 second intervals. An example of the DCE–MRI series for one subject is shown here with the five of the
images in the sequence numbered (1, 10, 13, 18, 27). Details of the protocol is given in [3].

of subjecting the patients to risks like bleeding and infections. Moreover, the relatively
small needle biopsies may lead to over or underestimation of the extent of inflammation in
the entire graft [2]. Therefore, a noninvasive and repeatable technique is not only helpful
but also needed in the diagnosis of acute renal rejection.

In DCE-MRI, a contrast agent called Gd-DTPA is injected into the bloodstream, and
as it perfuses into the organ, the kidneys are imaged rapidly and repeatedly. During the
perfusion, Gd-DTPA causes a change in the relaxation times of the tissue and creates a
contrast change in the images as shown in Figure 1. As a result, the patterns of the contrast
change gives functional information, while MRI provides good anatomical information
which helps in distinguishing the diseases that affect different parts of the kidneys. How-
ever, even with an imaging technique like DCE-MRI, there are several problems; such as,
(i) the spatial resolution of the dynamic MR images is low due to fast scanning, (ii) the
images suffer from the motion induced by the breathing patient which necessitates ad-
vanced registration techniques, (iii) the intensity of the kidney changes non-uniformly as
the contrast agent perfuse into the cortex which complicates the segmentation procedures.

To the best of our knowledge, there has been limited work on the dynamic MRI to over-
come the problems of registration and segmentation. For the registration problem, Gerig
et al. [4] proposed using Hough transform to register the edges in an image to the edges of
a mask and Giele et al. [5] introduced a phase difference movement detection method to
correct kidney displacements. Both of these studies required building a mask manually by
drawing the kidney contour on a 2D DCE-MRI image, followed by the registration of the
time frames to this mask. Therefore, the inherent segmentation (by drawing the contours)
was essentially manual. For automatic registration that does not depend on segmentation,
we proposed using mutual information registration in [3, 6].

For the segmentation problem, Boykov et al. [7] presented the use of graph cuts using
Markov models; where the energy is minimized depending on the manually exerted seed
points. Giele et al. [5] used image subtraction to obtain a mask, and closed the possible
gaps by the use of a hull function. For further segmenting the medulla and the cortex
structures, repeated erosions were applied to the mask to obtain several rings; however,
in such rings, the medulla structures were intermixed with the cortex structures, so a
correlation study had to be applied to better classify the cortical and medullary pixels.

Following these studies, a multi-step approach for segmentation and registration was
introduced by Sun et al. [8]. Initially, the edges are aligned using an image gradient based
similarity measure considering only translational motion. Once roughly aligned, a high-
contrast image is subtracted from a pre-contrast image to obtain a kidney contour; which
is then propagated over the other frames searching for the rigid registration parameters.
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Figure 2:Segmentation framework. An early enhancement image, seed points, and a late enhancement
image are selected from the current patient. For kidney segmentation, a deformable model is initialized
at the seed points to evolve with the gray level density estimation and the signed distance map density
estimation of prior shape. With a second deformable model, cortex and medulla are extracted from the
kidney region.

For the segmentation of the cortex and medulla, a level sets approach was used.
Most of these efforts used healthy transplants in the image analysis, and edge detection

algorithms were sufficient. However; in the case of acute rejection patients, the uptake of
the contrast agent is decreased, so edge detection fails in giving connected contours. For
this reason, we found the combined usage of gray level and prior shape information to
give better results.

2 Segmentation Framework

Within our segmentation framework, the user is asked to select an early enhancement
image (typically the5 − 15th images of the sequence) and a late enhancement image
(typically the30 − 40th images of the sequence). In an early enhancement image, the
cortical and medullary tissue are distinguishable; whereas in a late enhancement image,
the contrast is increased all-over the kidney easing the segmentation process. Thus, a
two-stage process is used for the segmentation in which (i) the kidney is segmented from
the surrounding structures using the late-enhancement image, and (ii) the segmented kid-
ney is further segmented into cortex and medulla using the early-enhancement image as
illustrated in Fig. 2.

In segmenting the kidney from the surrounding structures, the gray level distribution
of the kidney and surrounding organs is not highly distinguishable; thus, we developed
a deformable model which takes into account both the gray level distribution of the late-
enhanced kidney and a shape model of the kidney that depends on a sign distance map.
The gray level distribution is estimated using our modified EM algorithm [9], which uses
a linear combination of Gaussians with positive and negative components.

The rest of the paper is organized as follows: in the next section, we describe our
modified EM algorithm using linear combination of Gaussian distribution withpositive
andnegativecomponents. In Sec. 2.2, we describe how to obtain a shape model from
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a database of formerly segmented images. From these images, we calculate the signed
distance maps and estimate their density. By representing both shape and intensity as 1-D
density functions, we obtain a fast and computationally inexpensive deformable model
which is described in Sec. 2.3. Results and further directions are discussed in Sec. 3.

2.1 Density Estimation with a Modified EM Algorithm

Our modified Expectation-Maximization algorithm approximates an empirical probabil-
ity density function of scalar data with a linear combination of discrete Gaussians (LCDG)
with positive and negative components. Due to both positive and negative components,
the LCDG approximates inter-class transitions more accurately than a conventional mix-
ture of only positive Gaussians. In the following, we describe this model to estimate the
marginal density for the gray level distributionpg(q) in each region whereq is the gray
level. The same approach is also used to estimate the density of the signed distancesps(d)
in the given image whered is the signed distance inside and outside the object.

Let q ∈ Q = {0, 1, . . . , Q − 1} denote theQ-ary gray level. The discrete Gaussian
(DG) is defined as the discrete probability distributionΨθ = (ψ(q|θ) : q ∈ Q) onQ such
that

ψ(q|θ) = Φθ(q + 0.5)− Φθ(q − 0.5) for q = 1, . . . , Q− 2,

ψ(0|θ) = Φθ(0.5), ψ(Q− 1|θ) = 1− Φθ(Q− 1.5)

whereΦθ(q) is the cumulative Gaussian (normal) probability function with a shorthand
notationθ = (µ, σ2) for its mean,µ, and variance,σ2.

In contrast to a conventional mixture of Gaussians and/or other simple distributions,
one per region, we closely approximate the empirical gray level distribution for the given
image with a LCDG havingCp positive andCn negative components:

pg:w,Θ(q) =
Cp∑

r=1

wp,rψ(q|θp,r)−
Cn∑

l=1

wn,lψ(q|θn,l) (1)

under the obvious restriction on the weightsw = [wp,., wn,.]:
Cp∑

r=1

wp,r −
Cn∑

l=1

wn,l = 1 (2)

To estimate the parameters for the model shown in Eq. (2), we modify the conven-
tional EM algorithm to take into account both positive and negative discrete Gaussian
components. Our modified EM algorithm for LCDG maximizes the log-likelihood of the
empirical data to find the optimal model parameters assuming statistical independence of
the mixed signals:

L(w,Θ) =
∑

q∈Q

f(q) log pw,Θ(q) (3)

A local maximum of the log-likelihood in Eq. (3) is given with the EM process extending
the one in [10] onto alternating signs of the components. Let

p
[m]
w,Θ(q) =

Cp∑

r=1

w[m]
p,r ψ(q|θ[m]

p,r )−
Cn∑

l=1

w
[m]
n,l ψ(q|θ[m]

n,l )
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denote the current LCDG at iterationm. Relative contributions of each signalq ∈ Q to
each positive and negative DG at iterationm are specified by the respective conditional
weights

π[m]
p (r|q) =

w[m]
p,r ψ(q|θ[m]

p,r )

p
[m]
w,Θ(q)

, π[m]
n (l|q) =

w
[m]
n,l ψ(q|θ[m]

n,l )

p
[m]
w,Θ(q)

(4)

such that the following constraints hold:
Cp∑

r=1

π[m]
p (r|q)−

Cn∑

l=1

π[m]
n (l|q) = 1, q = 0, . . . , Q− 1. (5)

The following two steps iterate until the log-likelihood changes become small:

E– step[m + 1]: Find conditional expectations of the parametersw[m+1], Θ[m+1] using
the fixed weights of Eq. (4) for the stepm as conditional probabilities, and

M– step [m + 1]: Find the latter weights by maximizingL(w,Θ) under the fixed pa-
rametersw[m+1], Θ[m+1].

As shown in [10], this block relaxation process converges to a local maximum of the
likelihood in Eq. (3). The modified EM algorithm is sensitive to the initialization, so a
sequential EM algorithm has been used to get an initialization that has been presented in
[11]. The final mixed LCDG-modelpC(q) is partitioned into theK LCDG-submodels
P[k] = [p(q|k) : q ∈ Q], one per class, or regionk = 1, . . . , K, by associating subordinate
discrete Gaussians with the dominant terms so that the expected misclassification rate is
minimized. From the sequence given in Fig. 2, a scan of a kidney is given in Fig. 3(a),
and the steps to estimate its gray level density are illustrated in Fig. 3(b, c, d).
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Figure 3: An MRI scan of a kidney (a), and its gray level density estimation with the Modified EM
Algorithm: (b) LCG components of the density estimation, (c) The final estimated densitypg(q) for the
empirical densityf(q) of the kidney image, (d) The marginal density estimation for each class.
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2.2 Forming the Shape Database

To obtain a prior shape model for the kidney, we used a database of 30 subjects, 5 of which
are shown in Fig.4(a). As a first step, we manually segmented the kidneys from these
subjects and aligned them using affine registration (translation, rotation and scaling) as
shown in Fig.4(b). Then we obtained the 2D shape model of a kidney with the following
steps:

1. Manually segmented the kidneys from the surrounding organs and align the seg-
mented data set using affine registration. The results of affine registration is shown
in Fig.4(b).

2. From the database given in Fig.4(a), find the 2D edgeV of the kidneys as shown in
Fig.4(c).

3. For each edge image, calculate the signed distance functionSd(i, j) as shown in
Fig.4(d). Signed distance function basically calculates the Euclidean distance be-
tween a point on the image and the closest point to it on the contour, and gives a
positive distance value if the point on the image is inside the object, or gives a neg-
ative distance otherwise. In mathematical terms, signed distance functionSd(i, j)
can be represented as:

Sd(i, j) =





0 (i, j) ∈ V
d((i, j), V ) (i, j) ∈ RV

−d((i, j), V ) Otherwise
(6)

whereRV is the region which lies inside the shape andd
(
(i, j), V

)
is the mini-

mum Euclidean distance between the image location(i, j) and the curveV . This
representation is invariant to translation and rotation.

4. Calculate the occurrences of distance values (i.e. generate distance map histograms)
for all the database, and estimate their density with the modified EM algorithm.
These densities are shown in Fig.4(e).

5. Add the densities found in the previous step and obtain an average density function,
as shown in Fig.5(a).

6. Average the signed distance values calculated in Step 3. If average signed distance
Sav(i, j) of a pixel (i, j) is positive, assign the pixel to be kidney, otherwise make
it a background in the average shape image. With this step, an average kidney as
shown in Fig.5(f) is obtained. It is worth noting the similarity of this average kidney
to the kidney images found in anatomy books.

With these steps, shape modelling is completed, and an average kidney shape, as well
as an average signed distance density is obtained. These are the only two things that are
kept and used in the deformable model formulation; i.e. the average density function
(Fig.5(e)) and the average kidney shape (Fig.5(f)). Any new kidney image that needs to
be segmented is firstly registered to this average kidney shape, then the average signed
distance density is used in the deformable contour energy calculations.
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(a)

(b)

(c)

(d)

(e)

Figure 4:(a) A sample of the kidney database from 5 subjects. (b) Affine registration of the data set. (c)
Boundaries of the aligned kidneys. (d) Signed distance maps of the data set representing the distances to
the kidney contours. (e) Signed distance map densities obtained from (d) using the modified EM algorithm.
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a) The average signed distance map density. (b) The estimated two dominant modes which
presents the kidney area and its background, (c) the positive and negative LCDG components for finer
approximation, (d) final density estimation, and (e) the densities for two classes (red is for the kidney, blue
is for the background). (f) The average kidney shape. The pixels with positive signed distance map values
are assigned to be white indicating the kidney region, the pixels with negative signed distance map values
are assigned to be black indicating the background.

2.3 Deformable Model

In conventional deformable models, surfaces move in the direction that minimizes an
energy function that is composed of internal and external energy components given as:

E = Eint + Eext =
∫

τ∈T
(ξint(φ(τ)) + ξext(φ(τ)))dτ (7)

whereξint(φ(τ)) andξext(φ(τ)) denote the internal and external force, respectively.
Typical external forces designed in [12] lead a deformable model toward edges in a 2D

grayscale image. This and the other traditional external forces (e.g. based on lines or,
edges, or the gradient vector flow) fail to make the deformable model closely approach an
intricate boundary with concavities. As a solution to this problem, we modify the external
energy component of this energy formulation, and we formulate an energy function using
the density estimations of two distributions: the signed distance map from shape models
and the gray level distribution. The external energy component of our deformable models
is formulated as [13]:

ξext(φ(τ)) =

{
−p(q|k)ps(d|k)p(k) if k = k∗

p(q|k)ps(d|k)p(k) if k 6= k∗

In this formulation,k is the region label withk = 1 for the background andk = 2 for
kidney,q is the gray level,d is the signed distance; wherepg(q|k) is the density estimation
of the gray level as described in Sec. 2.1; andps(d|k) represents the density that describes
the signed distance map inside and outside the object as calculated in Sec. 2.2. With this
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energy function, the stochastic external force for each control pointφ(τ) of the current
deformable model evolves in a regionk∗ as shown in Fig. 6(a).

For the segmentation into cortex and medulla, we first ask the user to select seed points
from the possible medulla regions, and we allow separate deformable models to grow in
these regions, this time only with the gray level dependent energy function. Therefore,
the deformable model successfully moves within a lower and upper threshold to capture
the medulla regions, and the rest is the cortex.

3 Results

Our segmentation results are comparable to the radiologist’s segmentation (such as 0.382
for the example given in Fig. 6; and outperforms the other well-known approaches such as
[14] which gives an error of 10.1. In the proposed approach, after the best image selected
by the user is segmented, its shape is used to segment the rest of the sequence as shown in
Fig. 7(b) w.r.t the radiologist’s segmentation given in Fig. 7(a). For the segmentation into
cortex and medulla, the deformable model is evolved with only the gray level information,
with results shown in Fig. 7(c, d).

In this paper we presented a framework for the segmentation of the kidneys from Dy-
namic Contrast Enhanced Magnetic Resonance Images, and introduced a new deformable
model with an energy as a function of both the gray level density and the prior shape infor-
mation as 1D density functions. For these density estimations, we introduced a modified
EM algorithm. This paper builds upon our previous efforts and presents the segmentation
as a complete framework in more detail. For more information on the other applications
of this approach, the reader is referred to [13], to [6] for more information on the appli-
cations of kidney segmentation, and to [15] for more information on our current efforts
towards the non-rigid registration of segmented kidneys.

(a) (b) (c) (d)
Figure 6: The proposed deformable model in the kidney (a). For each of the neighbors of the control
point φ(i), four values are calculated to form the external energy: two values from the signed distance
density estimation (ps(d|k = 1) andps(d|k = 2)), and two values from the gray level density estimation
(pg(q|k = 1) andpg(q|k = 2)). Radiologist’s segmentation (b). Our segmentation result with error =
0.3820 w.r.t the radiologist segmentation (c). Segmentation results using the algorithm in [14] with error =
10.1 (d).
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