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VII. AC Machinery Fundamentals

AC machines are AC motors and AC generators.

There are two types of AC machines:

Synchronous machines – the magnetic field current is supplied by a 
separate DC power source;

Induction machines – the magnetic field current is supplied by magnetic 
induction (transformer action) into their field windings.

The field circuits of most AC machines are located on their rotors.

Every AC (or DC) motor or generator has two parts: rotating part (rotor) 
and a stationary part (stator).

Introduction
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The basic idea of an electric motor is to generate two magnetic fields: 
rotor magnetic field and stator magnetic field and make the stator field 
rotating. In this situation, the rotor will constantly turning to align its 
magnetic field with the stator field.

The fundamental principle of AC machine operation is to make a 3-
phase set of currents, each of equal magnitude and with a phase 
difference of 120, to flow in a 3-phase winding. In this situation, a 
constant magnitude rotating field will be generated.

The 3-phase winding consists of 3 separate windings spaced 120 apart 
around the surface of the machine.

Rotating Magnetic Field

Consider a simple 3-phase stator containing three 
coils, each 120 apart. Such a winding will produce 
only one north and one south magnetic pole; 
therefore, this motor would be called a two-pole 
motor.

Assume that the currents in three coils are:
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The directions of currents are indicated.

Therefore, the current through the coil aa’ produces the 
magnetic field intensity

' ( ) sin 0aa MH t H t  
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where the magnitude of the magnetic field intensity is 
changing over time, while 0 is the spatial angle of 
the magnetic field intensity vector. The direction of 
the field can be determined by the right-hand rule.

Note, that while the magnitude of the magnetic field 
intensity Haa’ varies sinusoidally over time, its 
direction is always constant. Similarly, the magnetic 
fields through two other coils are

The magnetic flux densities resulting from these magnetic 
field intensities can be found from
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The total magnetic field from all three coils added together will be

At the time t = 0 (t = 0) :
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The total magnetic field from all three coils added together will be

At the time t = /2 (t = 90) :
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We note that the magnitude of the magnetic field is constant but its 
direction changes.

Therefore, the constant magnitude magnetic field is rotating in a 
counterclockwise direction.
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Each vector can be represented as a sum of x and y components:

The magnetic flux density in the stator at any arbitrary 
moment is given by
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The net magnetic field has a constant magnitude and rotates counterclockwise  
at the angular velocity .

Which can be rewritten in form
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The stator rotating magnetic field can be represented 
as a north pole and a south pole. These magnetic 
poles complete one mechanical rotation around the 
stator surface for each electrical cycle of current. 

Therefore, the mechanical speed of rotation of the 
magnetic field equals to the electrical frequency.

The magnetic field passes the windings of a two-pole stator in the following 
counterclockwise sequence: a-c’-b-a’-c-b’. 

What if 3 additional windings will be added? 

The new sequence will be: a-c’-b-a’-c-b’-a-c’-b-a’-c-b’ and, when 3-phase 
current is applied to the stator, two north poles and two south poles will be 
produced. In this winding, a pole moves only halfway around the stator.
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The relationship between the electrical angle e (current’s phase change) and the 
mechanical angle m (at which the magnetic field rotates) in this situation is:

2e m 

Therefore, for a four-pole stator:
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For an AC machine with P poles in its stator:

Relating the electrical frequency to the motors speed rpm:
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If the current in any two of the three coils is swapped, the 
direction of magnetic field rotation will be reversed. 

Therefore, to change the direction of rotation of an AC motor, 
we need to switch the connections of any two of the three 
coils.

In this situation, the net magnetic flux density in the stator is

   
' ' '( ) ( ) ( ) ( )

sin 0 sin 240 120 sin 120 240
net aa bb cc

M M M

B t B t B t B t

B t B t B t  
  

          

   

   

3
ˆ ˆ ˆ( ) sin 0.5 sin 240 sin 240

2

3
ˆ ˆ0.5 sin 120 sin 120

2

net M M M

M M

B t B t x B t x B t y

B t x B t y

  

 

 
           

 
 

         
 

   

   

ˆ( ) sin 0.5 sin 240 0.5 sin 120

3 3
ˆsin 240 sin 120

2 2

net M M M

M M

B t B t B t B t x

B t B t y

  

 

        
 

      
 

Therefore:

1 3 1 3
ˆ( ) sin sin cos sin cos

4 4 4 4

3 3 3 3
ˆsin cos sin cos

4 4 4 4

net M M M M M

M M M M

B t B t B t B t B t B t x

B t B t B t B t y

    

   

 
     
 
 

     
 

   ˆ ˆ( ) 1.5 sin 1.5 cosnet M MB t B t x B t y    

The net magnetic field has a constant magnitude and rotates clockwise  at the 
angular velocity .

Switching the currents in two stator phases reverses the direction of rotation in an 
AC machine.
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Magnetomotive force and flux distribution on an AC 
machine

In the previous discussion, we assumed that the flux produced by a stator inside 
an AC machine behaves the same way it does in a vacuum. However, in real 
machines, there is a ferromagnetic rotor in the center with a small gap between a 
rotor and a stator.

A rotor can be cylindrical 
(such machines are said to 
have non-salient poles), or 
it may have pole faces 
projecting out from it 
(salient poles). We will 
restrict our discussion to 
non-salient pole machines 
only (cylindrical rotors).

The reluctance of the air gap is much higher than 
the reluctance of either the rotor or the stator; 
therefore, the flux density vector B takes the 
shortest path across the air gap: it will be 
perpendicular to both surfaces of rotor and stator.

To produce a sinusoidal voltage in this machine, 
the magnitude of the flux density vector B must 
vary sinusoidally along the surface of the air gap. 
Therefore, the magnetic field intensity (and the 
mmf) will vary sinusoidally along the air gap 
surface.
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One obvious way to achieve a sinusoidal 
variation  of mmf along the air gap surface would 
be to distribute the turns of the winding that 
produces the mmf in closely spaced slots along 
the air gap surface and vary the number of 
conductors in each slot sinusoidally, according 
to:

cosc cn N 

where Nc is the number of conductors at the angle 
of 00 and  is the angle along the surface.

Ideal mmf

mmf resulting 
from the winding

n0

However, in practice, only a finite number of 
slots and integer numbers of conductors are 
possible. As a result, real mmf will approximate 
the ideal mmf if this approach is taken.

Induced voltage in AC machines

Just as a 3-phase set of currents in a stator can produce a rotating magnetic 
field, a rotating magnetic field can produce a 3-phase set of voltages in the coils 
of a stator.
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The induced voltage in a single coil on a two-pole stator

Assume that a rotor with a sinusoidally distributed 
magnetic field rotates in the center of a stationary coil.

We further assume that the magnitude of the flux density B
in the air gap between the rotor and the stator varies 
sinusoidally with mechanical angle, while its direction is 
always radially outward.

Note, that this is an ideal flux 
distribution.

Flux density in a gap

The magnitude of the flux 
density vector at a point 
around the rotor is

cosMB B  (6.19.1)

Where  is the angle from the 
direction of peak flux 
intensity. 

stator 
coil

Since the rotor is rotating within the stator at an angular velocity m, the 
magnitude of the flux density vector at any angle  around the stator is

 cosMB B t  

The voltage induced in a wire is

 inde v B l  

Here v is the velocity of the wire relative to the magnetic field
B is the magnetic flux density vector
l is the length of conductor in the magnetic field

However, this equation was derived for a moving wire in a stationary magnetic 
field. In our situation, the wire is stationary and the magnetic field rotates. 
Therefore, the equation needs to be modified: we need to change reference such 
way that the field appears as stationary.
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The total voltage induced in the coil is a sum of the voltages induced in each of 
its four sides. These voltages are:

1. Segment ab:  = 1800; assuming that B is radially outward from the rotor, the 
angle between v and B is 900, so

   cos 180ba M me v B I vB l t      

2. Segment bc: the voltage will be zero since the vectors (v x B) and l are 
perpendicular.

  0cbe v B I   

3. Segment cd:  = 00; assuming that B is radially outward from the rotor, the 
angle between v and B is 900, so

   cosdc M me v B I vB l t   
4. Segment da: the voltage will be zero since the vectors (v x B) and l are 
perpendicular.   0ade v B I   

Therefore, the total voltage on the coil is:
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Since the velocity of the end conductor is mv r

Then: 2 cosind M m me rlB t 

The flux passing through a coil is 2 MrlB 

Therefore: cosind m me t 

Finally, if the stator coil has NC turns of wire, the total induced voltage in the 
coil:

cosind C m me N t 
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The induced voltage in a 3-phase set of coils

In three coils, each of NC turns, placed around the rotor magnetic field, the 
induced in each coil will have the same magnitude and phases differing by 1200:
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A 3-phase set of currents can generate a uniform 
rotating magnetic field in a machine stator, and 
a uniform rotating magnetic field can generate a 
3-phase set of voltages in such stator.

RMS voltage in a 3-phase stator

The peak voltage in any phase of a 3-phase stator is:

max C mE N 

For a 2-pole stator: 2m e f     

Thus: max 2 CE N f 

The rms voltage in any phase of a 2-pole 3-phase stator is:

2

2
2CA CNE Nf f

   

The rms voltage at the terminals will depend on the type of stator connection: if 
the stator is Y-connected, the terminal voltage will be . For the delta 
connection, it will be just EA .

3 AE



13

Ex1: The peak flux density of the rotor magnetic field in a simple 2-pole 3-phase 
generator is 0.2 T; the mechanical speed of rotation is 3600 rpm; the stator 
diameter is 0.5 m; the length of its coil is 0.3 m and each coil consists of 15 turns 
of wire. The machine is Y-connected.

a) What are the 3-phase voltages of the generator as a function of time?
b) What is the rms phase voltage of the generator?
c) What is the rms terminal voltage of the generator?

Sol. The flux in this machine is given by

2 0.5 0.3 0.2 0.03rlB dlB Wb       

The rotor speed is
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  

a) The magnitude of the peak phase voltage is

max 15 0.03 377 169.7CE N V     

and the three phase voltages are:
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b) The rms voltage of the generator is

c) For a Y-connected generator, its terminal voltage is

max 169.7
120

2 2
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E
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3 120 208TV V   
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Induced torque in an AC machine

In an AC machine under normal operating conditions two magnetic fields are 
present: a field from the rotor and a field from the stator circuits. The interaction 
of these magnetic fields produces the torque in the machine.

Assuming a sinusoidal stator flux distribution 
peaking in the upward direction

(where BS is the magnitude of the peak flux 
density) and a single coil of wire mounted on 
the rotor, the induced force on the first 
conductor (on the right) is

( ) sinS SB B 

  sinSF i ilB  l ×B

The torque on this conductor is (counter-
clockwise) 

,1 sinind SrilB  r ×F

  sinSF i ilB  l ×B

The torque on this conductor is (counter-clockwise) 

,2 sinind SrilB  r ×F

The induced force on the second conductor (on the left) is

Therefore, the torque on the rotor loop is 

2 sinind SrilB 

We may notice the following:

1. The current i flowing in the rotor coil produces its own magnetic field HR, 
whose magnitude is proportional to the current and direction can be found via the 
RHR.

2. The angle between the peak of the stator flux density BS and the peak of the 
magnetic field intensity HR is . 
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 
180

sin sin 180 sin

 
  
 

  

Furthermore,

Therefore, the torque on the loop is

sinind R SKH B 

Here K is a constant dependent on the 
machine design. Therefore:

ind R SKH B  

Since 
R RB H

ind R SkB B  

Here  k = K/ is a constant dependent on the machine design.

The torque equation can be applied to any AC machine, not just to simple one-
loop rotors. Since this equation is used for qualitative studies of torque, the 
constant k is not important.

Assuming no saturation, the net magnetic field is a vector sum of rotor and stator 
fields:

net R SB B B 

Combining the last equation with the torque equation, we arrive at

     ind R net R R net R RkB B B k B B k B B       

Since the cross-product of any vector with itself is zero:

ind R netkB B  
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Assuming that the angle between the rotor BR and stator BS magnetic fields is :

sinind R netkB B 

Assume that the rotor of the AC machine is 
rotating counter-clockwise and the 
configuration of magnetic fields is shown. 

The combination of and the RHR shows that 
the torque will be clockwise, i.e. opposite to 
the direction of rotation of the rotor. 

Therefore, this machine must be acting as a 
generator.

Winding insulation in AC machines

Winding insulation is of critical importance. If insulation of a motor or generator 
breaks down, the machine shorts out and the repair is expensive and sometimes 
even impossible. Most insulation failures are due to overheating.

To limit windings temperature, the maximum power that can be supplied by the 
machine must be limited in addition to the proper ventilation.

ROT: the life expectancy of a motor with a given type of insulation is halved for 
each 100C rise above the rated winding temperature.
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AC machine power flows and losses

The efficiency of an AC machine is defined as

100%out

in

P

P
  

Since the difference between the input and output powers of a machine is due 
to the losses occurring inside it, the efficiency is

100%in loss

in

P P

P
 
 

Losses occurring in an AC machine can be divided into four categories:

1. Electrical or Copper losses

These losses are resistive heating losses that occur in the stator (armature) 
winding and in the rotor (field) winding of the machine. For a 3-phase machine, 
the stator copper losses and synchronous rotor copper losses are:

2

2

3

3

SCL A A

RCL F F

P I R

P I R





Where IA and IF are currents flowing in each armature phase and in the field 
winding respectively. RA and RF are resistances of each armature phase and of the 
field winding respectively. These resistances are usually measured at normal 
operating temperature.
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2. Core losses

These losses are the hysteresis losses and eddy current losses. They vary as B2

(flux density) and as n1.5 (speed of rotation of the magnetic field).

3. Mechanical losses

There are two types of mechanical losses: friction (friction of the bearings) and 
windage (friction between the moving parts of the machine and the air inside the 
casing). These losses are often lumped together and called the no-load rotational 
loss of the machine. They vary as the cube of rotation speed n3.

4. Stray (miscellaneous) losses

These are the losses that cannot be classified in any of the previous categories. 
They are usually due to inaccuracies in modeling. For many machines, stray 
losses are assumed as 1% of full load.

The power-flow diagram

On of the most convenient technique to account for power losses in a machine is 
the power-flow diagram.

AC generator:

AC motor:

The mechanical power is 
input, and then all losses but 
cupper are subtracted. The 
remaining power Pconv is 
ideally converted to electricity:

conv ind mP  

Power-flow diagram is simply 
reversed.
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Voltage regulation

Voltage regulation (VR) is a commonly used figure of merit for generators:

100%nl fl

fl

V V
VR

V


 

Here Vnl and Vfl are the no-load full-load terminal voltages of the generator. VR is 
a rough measure of the generator’s voltage-current characteristic. A small VR 
(desirable) implies that the generator’s output voltage is more constant for various 
loads.

Speed regulation

Speed regulation (SR) is a commonly used figure of merit for motors:
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Here nnl and nfl are the no-load full-load speeds of the motor. SR is a rough 
measure of the motor’s torque-speed characteristic. A positive SR  implies that a 
motor’s speed drops with increasing load. The magnitude of SR reflects a 
steepness of the motor’s speed-torque curve.


