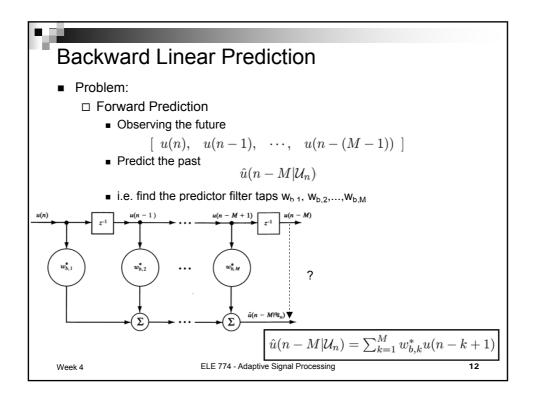
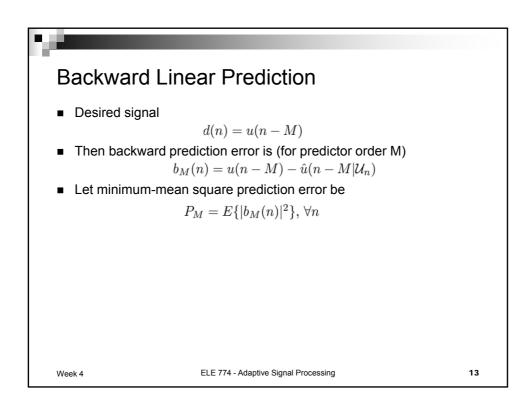
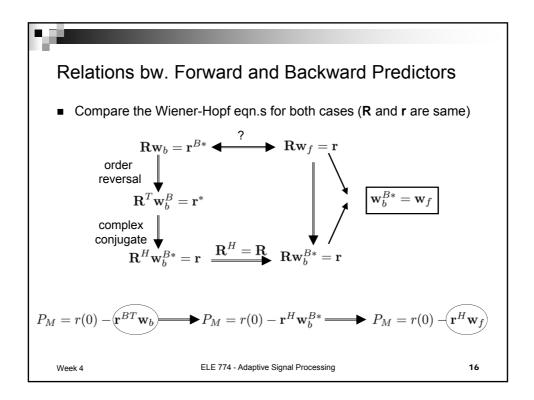
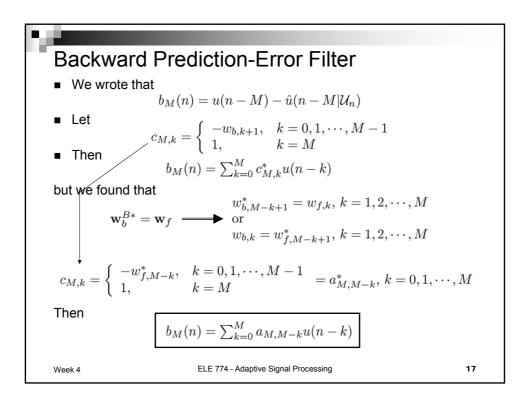
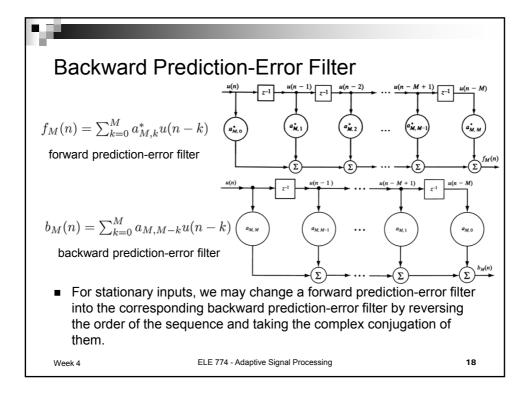

• Forward Linear Prediction • A structure similar to Wiener filter, same approach can be used. • For the input vector $\mathbf{u}(n-1) = \begin{bmatrix} u(n-1) & u(n-2) & \cdots & u(n-(M)) \end{bmatrix}^T$ with the autocorrelation $\mathbf{R} = E\{\mathbf{u}(n-1)\mathbf{u}^H(n-1)\}$ $= \begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^*(1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r^*(M-1) & r^*(M-2) & \cdots & r(0) \end{bmatrix}$ • Find the filter taps $\mathbf{w}_f = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^T$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\overline{u^*(n)}\}$ $= \begin{bmatrix} r^{*}(1) \\ r^{*}(2) \\ \vdots \\ r^{*}(M) \end{bmatrix} = \begin{bmatrix} r(-1) \\ r(-2) \\ \vdots \\ r(-M) \end{bmatrix}$	
• For the input vector $\mathbf{u}(n-1) = \begin{bmatrix} u(n-1) & u(n-2) & \cdots & u(n-(M)) \end{bmatrix}^T$ with the autocorrelation $\mathbf{R} = E\{\mathbf{u}(n-1)\mathbf{u}^H(n-1)\}$ $= \begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^*(1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r^*(M-1) & r^*(M-2) & \cdots & r(0) \end{bmatrix}$ • Find the filter taps $\mathbf{w}_f = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^T$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$	Forward Linear Prediction
$\mathbf{u}(n-1) = \begin{bmatrix} u(n-1) & u(n-2) & \cdots & u(n-(M)) \end{bmatrix}^{T}$ with the autocorrelation $\mathbf{R} = E\{\mathbf{u}(n-1)\mathbf{u}^{H}(n-1)\}$ $= \begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^{*}(1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r^{*}(M-1) & r^{*}(M-2) & \cdots & r(0) \end{bmatrix}$ $\bullet \text{ Find the filter taps}$ $\mathbf{w}_{f} = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^{T}$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^{*}(n)}\}$	A structure similar to Wiener filter, same approach can be used.
with the autocorrelation $\mathbf{R} = E\{\mathbf{u}(n-1)\mathbf{u}^{H}(n-1)\}$ $= \begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^{*}(1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r^{*}(M-1) & r^{*}(M-2) & \cdots & r(0) \end{bmatrix}$ $= \text{Find the filter taps}$ $\mathbf{w}_{f} = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^{T}$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^{*}(n)}\}$	
$\mathbf{R} = E\{\mathbf{u}(n-1)\mathbf{u}^{H}(n-1)\}$ $= \begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^{*}(1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r^{*}(M-1) & r^{*}(M-2) & \cdots & r(0) \end{bmatrix}$ $= \text{Find the filter taps}$ $\mathbf{w}_{f} = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^{T}$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^{*}(n)}\}$	$\mathbf{u}(n-1) = \left[egin{array}{ccc} u(n-1) & u(n-2) & \cdots & u(n-(M)) \end{array} ight]^T$
$= \begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^*(1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r^*(M-1) & r^*(M-2) & \cdots & r(0) \end{bmatrix}$ • Find the filter taps $\mathbf{w}_f = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^T$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$	with the autocorrelation
Find the filter taps $\mathbf{w}_f = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^T$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$	$\mathbf{R} = E\{\mathbf{u}(n-1)\mathbf{u}^H(n-1)\}$
Find the filter taps $\mathbf{w}_f = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^T$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$	$r(0)$ $r(1)$ \cdots $r(M-1)$
Find the filter taps $\mathbf{w}_f = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^T$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$	$r^*(1)$ $r(0)$ \cdots $r(M-2)$
Find the filter taps $\mathbf{w}_f = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^T$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$	
• Find the filter taps $\mathbf{w}_f = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^T$ where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$	$r^*(M-1) r^*(M-2) \cdots r(0)$
where the cross-correlation bw. the filter input and the desired response is $\mathbf{r} = E\{\mathbf{u}(n-1)\hat{u^*(n)}\}$	Find the filter taps
response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$	$\mathbf{w}_{f} = \begin{bmatrix} w_{f,1} & w_{f,2} & \cdots & w_{f,M} \end{bmatrix}^{T}$
	where the cross-correlation bw. the filter input and the desired
$= \begin{bmatrix} r^{*}(1) & r(-1) \\ r^{*}(2) \\ \vdots & = \end{bmatrix} = \begin{bmatrix} r(-1) \\ r(-2) \\ \vdots \\ \vdots \end{bmatrix}$	response is $\mathbf{r} = E\{\mathbf{u}(n-1)\widehat{u^*(n)}\}$
$= \begin{vmatrix} r^*(2) \\ \vdots \end{vmatrix} = \begin{vmatrix} r(-2) \\ \vdots \end{vmatrix}$	$\begin{bmatrix} r^*(1) \end{bmatrix} \begin{bmatrix} r(-1) \end{bmatrix}$
	$r^*(2)$ $r(-2)$
$r^*(M)$ $r(-M)$	$r^*(M)$ $r(-M)$
Week 4 ELE 774 - Adaptive Signal Processing 6	Week 4 ELE 774 - Adaptive Signal Processing 6

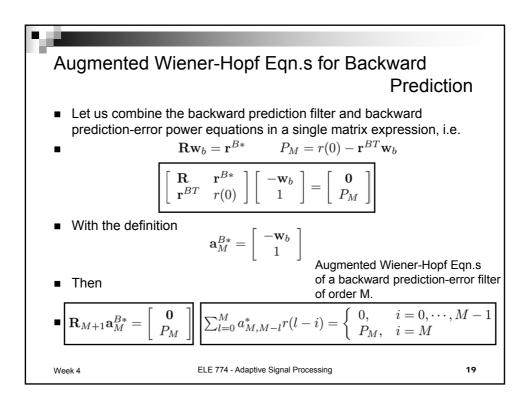

Forward Linear F	Prediction)	
Solving the Wiener-Hop	f equations, w	e obtain	
	$\mathbf{B}\mathbf{w}_{\mathbf{a}} = \mathbf{r}$		
	$\mathbf{R}\mathbf{w}_f = \mathbf{r}$		
and the minimum forwa	rd-prediction e	rror nower he	ecomes
P_{λ}	$r_{I} = r(0) - \mathbf{r}^{H} \mathbf{v}$	N s	
- 1	I = V(0)	·· J	
In summary,			
In summary,			
In summary, TABLE 3.1 Summary of Wiener Filter V	ariables		
	<i>a</i> riables	Forward	Backward
	ariables Wiener filter	Forward predictor	Backward predictor
TABLE 3.1 Summary of Wiener Filter V Quantity	Wiener filter of Fig. 2.4	predictor of Fig. 3.1(a)	predictor of Fig. 3.2(a)
TABLE 3.1 Summary of Wiener Filter V Quantity Tap-input vector	Wiener filter of Fig. 2.4 u (n)	predictor of Fig. 3.1(a) $\mathbf{u}(n-1)$	predictor of Fig. $3.2(a)$ $\mathbf{u}(n)$
TABLE 3.1 Summary of Wiener Filter V Quantity	Wiener filter of Fig. 2.4	predictor of Fig. 3.1(a)	predictor of Fig. 3.2(a)
TABLE 3.1 Summary of Wiener Filter V Quantity Tap-input vector Desired response	Wiener filter of Fig. 2.4 u(n) d(n) w_o	predictor of Fig. 3.1(a) $\mathbf{u}(n-1)$ u(n) \mathbf{w}_f	predictor of Fig. 3.2(a) $\mathbf{u}(n)$ u(n - M)
TABLE 3.1 Summary of Wiener Filter V Quantity Tap-input vector Desired response Tap-weight vector	Wiener filter of Fig. 2.4 $\mathbf{u}(n)$ d(n)	predictor of Fig. 3.1(a) $\mathbf{u}(n-1)$ u(n)	predictor of Fig. 3.2(a) u(n) u(n - M) w_b $b_M(n)$ R
TABLE 3.1 Summary of Wiener Filter V Quantity Tap-input vector Desired response Tap-weight vector Estimation error	Wiener filter of Fig. 2.4 $\mathbf{u}(n)$ d(n) \mathbf{w}_o e(n)	predictor of Fig. 3.1(a) $\mathbf{u}(n-1)$ u(n) \mathbf{w}_f $f_{\mathcal{M}}(n)$	$u(n)$ $u(n - M)$ w_b $b_M(n)$
TABLE 3.1 Summary of Wiener Filter V Quantity Tap-input vector Desired response Tap-weight vector Estimation error Correlation matrix of tap inputs	Wiener filter of Fig. 2.4 $\mathbf{u}(n)$ d(n) \mathbf{w}_o e(n) \mathbf{R}	predictor of Fig. 3.1(a) u(n - 1) u(n) w_f $f_M(n)$ R	predictor of Fig. 3.2(a) u(n) u(n - M) w_b $b_M(n)$ R

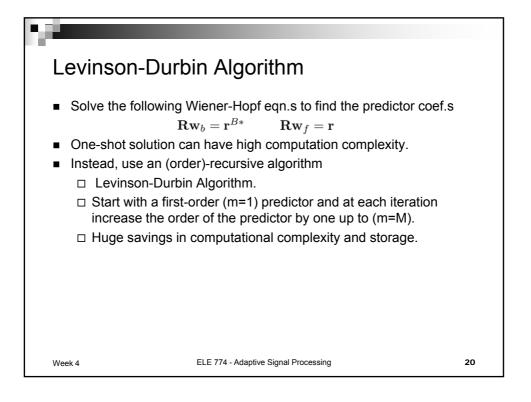


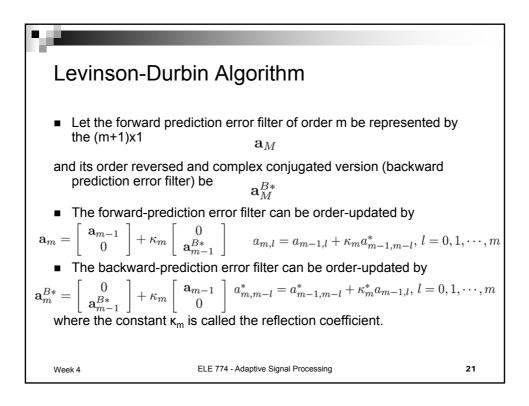


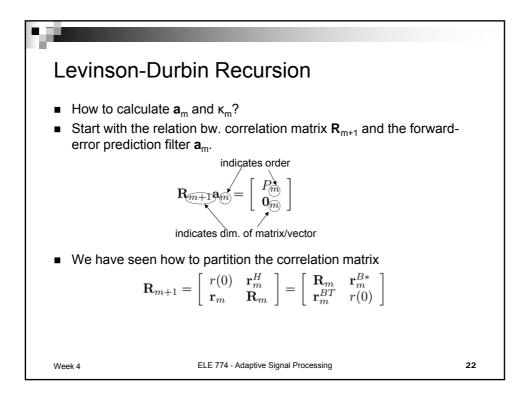


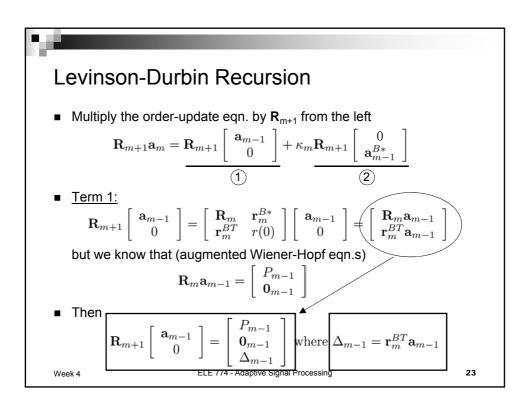


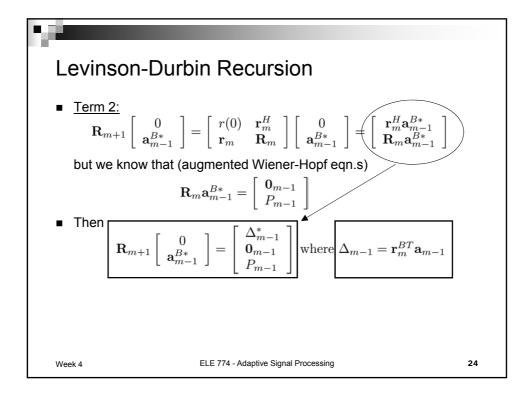

Backward Linear Prediction	
Problem:	
 For the input vector 	
$\mathbf{u}(n) = \begin{bmatrix} u(n) & u(n-1) & \cdots & u(n-(M-1)) \end{bmatrix}^T$	
with the autocorrelation	
$\mathbf{R} = E\{\mathbf{u}(n-1)\mathbf{u}^H(n-1)\}$	
$\mathbf{R} = E\{\mathbf{u}(n-1)\mathbf{u}^{H}(n-1)\}$ $= \begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^{*}(1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r^{*}(M-1) & r^{*}(M-2) & \cdots & r(0) \end{bmatrix}$	
Find the filter taps	
$\mathbf{w}_{b} = \begin{bmatrix} w_{b,1} & w_{b,2} & \cdots & w_{b,M} \end{bmatrix}^{T}$	
where the cross-correlation by, the filter input and the desired	
response is $\mathbf{r}^{B*} = E\{\mathbf{u}(n)u^*(n-M)\}$ = $\begin{bmatrix} r(M) \\ r(M-1) \\ \vdots \\ r(1) \end{bmatrix}$	
Week 4 ELE 774 - Adaptive Signal Processing	14

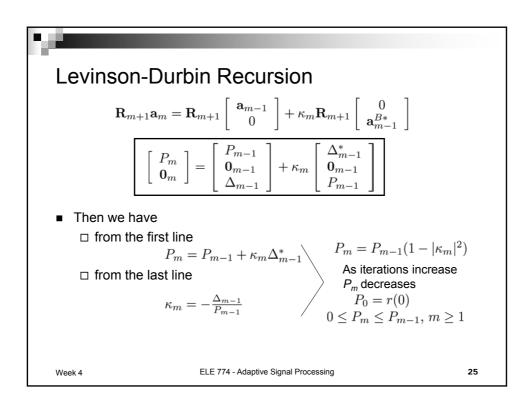

	D //			
Backward Linear	Prediction	on		
- Colving the Mission Lieu	f			
 Solving the Wiener-Hop 				
•	$\mathbf{R}\mathbf{w}_b = \mathbf{r}^{B*}$			
- and the minimum forway	d prodiction o	l rror nowor h		
 and the minimum forwar 	a-prediction e	inor power be	ecomes	
P_{N}	$t = r(0) - \mathbf{r}^{BT}$	\mathbf{w}_{h}		
		0		
In summary,				
■ In summary,				_
	ariables]		_
■ In summary,	ariables	Forward	Backward	_
■ In summary,	ariables Wiener filter	Forward predictor	Backward predictor	_
■ In summary,				_
 In summary, TABLE 3.1 Summary of Wiener Filter Value Quantity 	Wiener filter of Fig. 2.4	predictor of Fig. 3.1(a)	predictor of Fig. 3.2(a)	_
 In summary, TABLE 3.1 Summary of Wiener Filter Value 	Wiener filter of Fig. 2.4 u (n)	predictor of Fig. 3.1(a) $\mathbf{u}(n-1)$	predictor	-
 In summary, TABLE 3.1 Summary of Wiener Filter Value Quantity Tap-input vector 	Wiener filter of Fig. 2.4	predictor of Fig. 3.1(a)	predictor of Fig. 3.2(a) u (n)	
 In summary, TABLE 3.1 Summary of Wiener Filter Value Quantity Tap-input vector Desired response 	Wiener filter of Fig. 2.4 $\mathbf{u}(n)$ d(n)	predictor of Fig. 3.1(a) $\mathbf{u}(n-1)$ u(n)	predictor of Fig. 3.2(a) $\mathbf{u}(n)$ u(n - M)	_
 In summary, TABLE 3.1 Summary of Wiener Filter Value Quantity Tap-input vector Desired response Tap-weight vector 	Wiener filter of Fig. 2.4 u(n) d(n) w_o	predictor of Fig. 3.1(a) $\mathbf{u}(n-1)$ u(n) \mathbf{w}_f	$\mathbf{u}(n)$ $\mathbf{u}(n-M)$ \mathbf{w}_{b} $\mathbf{b}_{M}(n)$ \mathbf{R}	_
 In summary, TABLE 3.1 Summary of Wiener Filter Value Quantity Tap-input vector Desired response Tap-weight vector Estimation error 	Wiener filter of Fig. 2.4 $\mathbf{u}(n)$ d(n) \mathbf{w}_o e(n)	predictor of Fig. 3.1(a) $\mathbf{u}(n-1)$ u(n) \mathbf{w}_{f} $f_{\mathcal{M}}(n)$	predictor of Fig. 3.2(a) u(n - M) w_b $b_M(n)$	
 In summary, TABLE 3.1 Summary of Wiener Filter Value Quantity Tap-input vector Desired response Tap-weight vector Estimation error Correlation matrix of tap inputs 	Wiener filter of Fig. 2.4 $\mathbf{u}(n)$ d(n) \mathbf{w}_o e(n) \mathbf{R}	predictor of Fig. 3.1(a) u(n - 1) u(n) \mathbf{w}_{f} $f_{\mathcal{M}}(n)$ \mathbf{R}	$\mathbf{u}(n)$ $\mathbf{u}(n-M)$ \mathbf{w}_{b} $\mathbf{b}_{M}(n)$ \mathbf{R}	

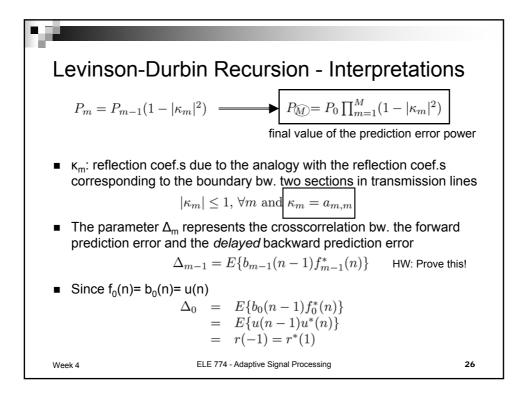


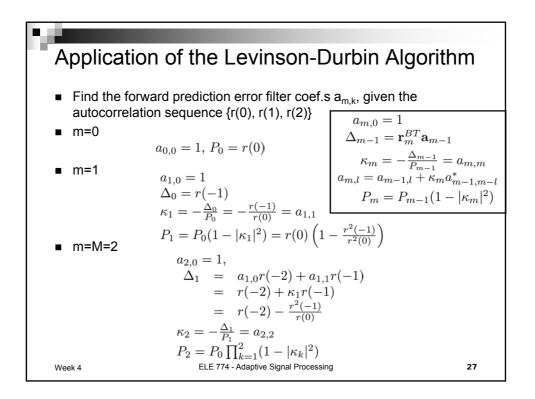


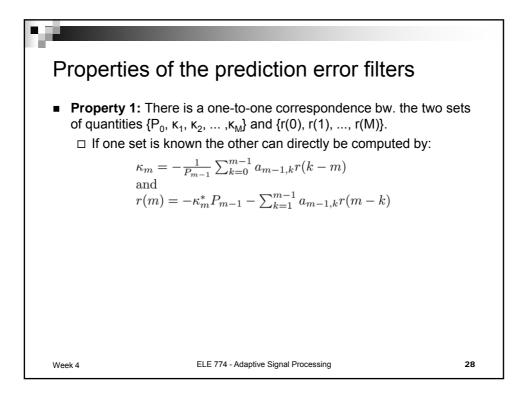


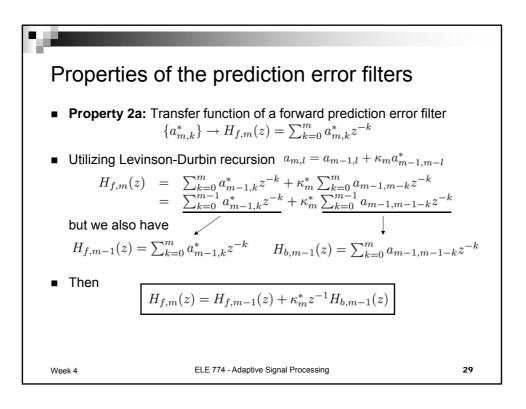


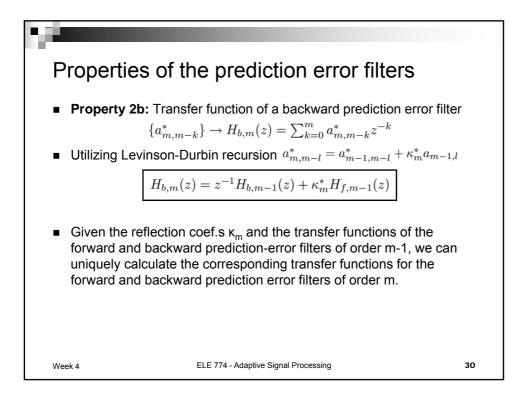


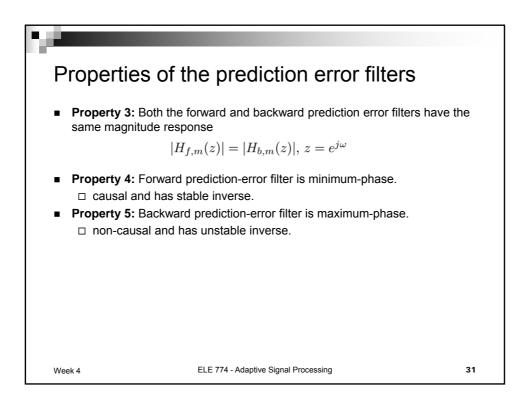


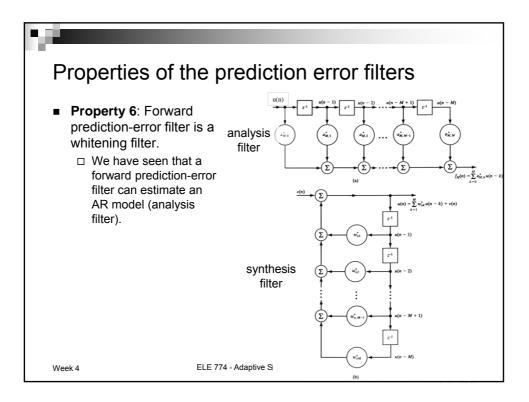


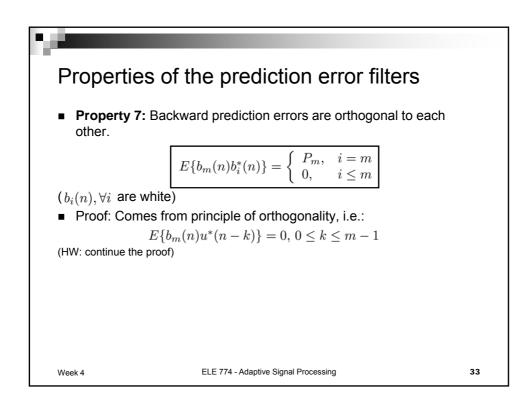


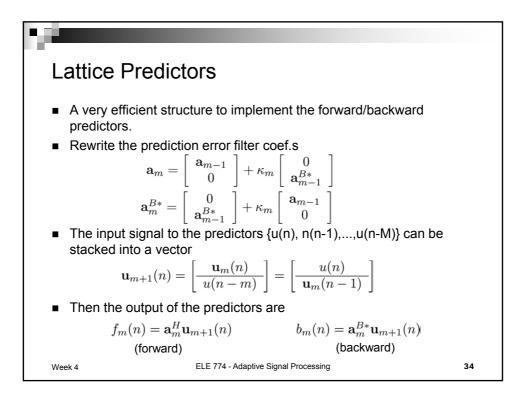


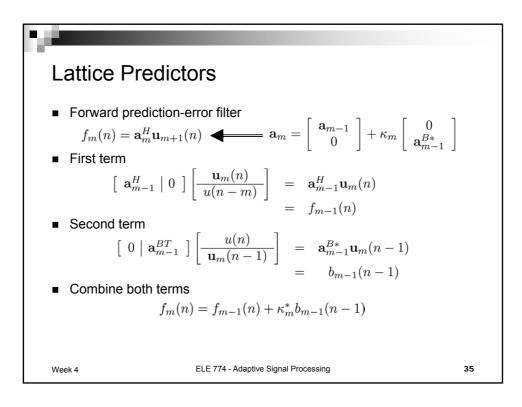


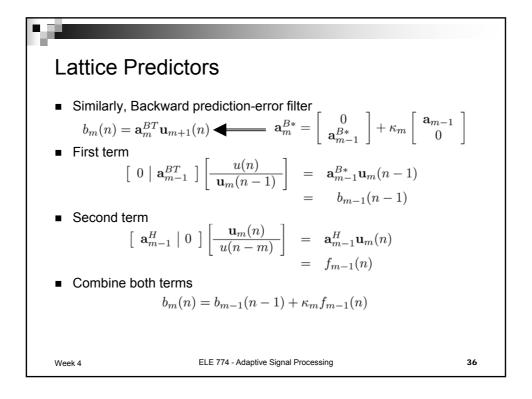


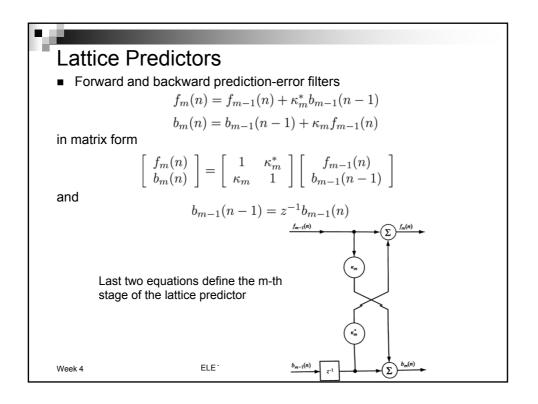











16

