ACADEMICS
Course Details
ELE 120 Computers and Programming II
2020-2021 Spring term information
The course is not open this term
Timing data are obtained using weekly schedule program tables. To make sure whether the course is cancelled or time-shifted for a specific week one should consult the supervisor and/or follow the announcements.
Course definition tables are extracted from the ECTS Course Catalog web site of Hacettepe University (http://akts.hacettepe.edu.tr) in real-time and displayed here. Please check the appropriate page on the original site against any technical problems. Course data last updated on 25/01/2021.
ELE120 - COMPUTERS and PROGRAMMING II
Course Name | Code | Semester | Theory (hours/week) |
Application (hours/week) |
Credit | ECTS |
---|---|---|---|---|---|---|
COMPUTERS and PROGRAMMING II | ELE120 | 2nd Semester | 3 | 0 | 3 | 5 |
Prerequisite(s) | None | |||||
Course language | English | |||||
Course type | Must | |||||
Mode of Delivery | Face-to-Face | |||||
Learning and teaching strategies | Lecture Question and Answer Problem Solving Other: This course must be taken together with "ELE 122 Computers and Programming Laboratory" course. | |||||
Instructor (s) | Faculty members | |||||
Course objective | First and foremost aim of the course is to teach the student an introduction to programming using C as a programming language. To do this, program analysis, different ways of writing a program and access to a conclusion, efficient program writing, written documentation of the program, the ability to write clear and uniform rules, the acquisition of the appropriate program error debugging is explained. In addition, the ability to create a modular software is aimed. Furthermore, the data structures are explained. Examples from structured programming is taught with C programming as a sample programming language. | |||||
Learning outcomes |
| |||||
Course Content | Programming structures and introduction to high level languages Program analysis. Description of the problem solution. Implementation of algorithms as programs. Debugging a program. Reading and storing data. Input and output features. Data types. Introduction to control structures. Decision structures. Expressions, strings. Built-in functions and user defined functions. Loops and nested loop structures. Subroutines. Arrays and subscripts. Formatted output and files. Pointers Recursion. Binary trees and linked lists | |||||
References | Deitel P, Deitel H., C How to Program, Pearson. Hanley J, Koffman E.,Problem Solving and Program Design in C, Pearson. |
Course outline weekly
Weeks | Topics |
---|---|
Week 1 | Programming structures and introduction to high level languages |
Week 2 | Program analysis. Description of the problem solution. Implementation of algorithms as programs. |
Week 3 | Debugging a program. Reading and storing data. Input and output features. Data types. |
Week 4 | Subroutines, Introduction to control structures. |
Week 5 | Decision structures. Expressions, strings, built-in functions and user defined function. |
Week 6 | Loop and nested loop structures. |
Week 7 | Arrays and subscripts. Formatted output and files. |
Week 8 | Midterm |
Week 9 | Pointers |
Week 10 | Recursion |
Week 11 | Pointers and arrays |
Week 12 | Pointers and arrays |
Week 13 | Binary trees |
Week 14 | Linked lists |
Week 15 | Preparation for the final exam |
Week 16 | Final exam |
Assesment methods
Course activities | Number | Percentage |
---|---|---|
Attendance | 0 | 0 |
Laboratory | 0 | 0 |
Application | 0 | 0 |
Field activities | 0 | 0 |
Specific practical training | 0 | 0 |
Assignments | 6 | 20 |
Presentation | 0 | 0 |
Project | 0 | 0 |
Seminar | 0 | 0 |
Midterms | 1 | 40 |
Final exam | 1 | 40 |
Total | 100 | |
Percentage of semester activities contributing grade succes | 7 | 60 |
Percentage of final exam contributing grade succes | 1 | 40 |
Total | 100 |
Workload and ECTS calculation
Activities | Number | Duration (hour) | Total Work Load |
---|---|---|---|
Course Duration (x14) | 14 | 3 | 42 |
Laboratory | 0 | 0 | 0 |
Application | 0 | 0 | 0 |
Specific practical training | 0 | 0 | 0 |
Field activities | 0 | 0 | 0 |
Study Hours Out of Class (Preliminary work, reinforcement, ect) | 14 | 3 | 42 |
Presentation / Seminar Preparation | 0 | 0 | 0 |
Project | 0 | 0 | 0 |
Homework assignment | 6 | 3 | 18 |
Midterms (Study duration) | 1 | 25 | 25 |
Final Exam (Study duration) | 1 | 25 | 25 |
Total Workload | 36 | 59 | 152 |
Matrix Of The Course Learning Outcomes Versus Program Outcomes
D.9. Key Learning Outcomes | Contrubition level* | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1. PO1. Possesses the theoretical and practical knowledge required in Electrical and Electronics Engineering discipline. | X | ||||
2. PO2. Utilizes his/her theoretical and practical knowledge in the fields of mathematics, science and electrical and electronics engineering towards finding engineering solutions. | X | ||||
3. PO3. Determines and defines a problem in electrical and electronics engineering, then models and solves it by applying the appropriate analytical or numerical methods. | X | ||||
4. PO4. Designs a system under realistic constraints using modern methods and tools. | X | ||||
5. PO5. Designs and performs an experiment, analyzes and interprets the results. | X | ||||
6. PO6. Possesses the necessary qualifications to carry out interdisciplinary work either individually or as a team member. | X | ||||
7. PO7. Accesses information, performs literature search, uses databases and other knowledge sources, follows developments in science and technology. | X | ||||
8. PO8. Performs project planning and time management, plans his/her career development. | X | ||||
9. PO9. Possesses an advanced level of expertise in computer hardware and software, is proficient in using information and communication technologies. | X | ||||
10. PO10. Is competent in oral or written communication; has advanced command of English. | X | ||||
11. PO11. Has an awareness of his/her professional, ethical and social responsibilities. | X | ||||
12. PO12. Has an awareness of the universal impacts and social consequences of engineering solutions and applications; is well-informed about modern-day problems. | X | ||||
13. PO13. Is innovative and inquisitive; has a high level of professional self-esteem. | X |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest